
CFDJ Feature: WDDX & Data Sharing 6
How to use WDDX and Microsoft Excel for bulk data entry Tim Buntel

Live Monitoring of User Sessions 20
Know how many users are currently active in your apps Christian Schneider

CF Techniques: Dynamic Goes Static 24
Create successful dynamic applications that can
be turned into static pages with ColdFusion Dustin Smith

Using Forms to Add or Change Data Part 2 26
A primer in dynamic page development for CF beginners Ben Forta

CFDJ Feature : Introducing Smart Objects 42
Here’s how to build extendable, reusable,
object-based components using CFML Benjamin Pate

Extending CFForm with Customized 50

JavaScript Validation Write your own functions
to perform additional validation on your CFFORM tags Selene Bainum

Developing Wireless Apps 56
Setting the stage for growing acceptance Charles Arehart

U.S. $8.99 (Canada $9.99)

ColdFusionJournal.com

Editorial

Making Money on
Internet Time

Robert Diamond page 5

Foundations

Hors d’ Oeuvres
Anyone?

Hal Helms page 12

<BF> ON <CF>

Lock It or Lose It
Ben Forta page 16

August 2000 Volume: 2 Issue: 8

GET READY FOR UNWIRED APPSGET READY FOR UNWIRED APPSGET READY FOR UNWIRED APPS

CF Security
Security Made

Simple
Kelly Brown page 38

November
5–8

Wash. DC

page 42

Marriott
Wardman

Park
Hotel

Announcing...
Coming
November 12-15, 2000

September 24-27, 2000

www.ColdFusionJournal.comCFDJ AUGUST2

abble commerce
www.ablecommerce.com

www.ColdFusionJournal.com 3AUGUST CFDJ

figleaf
www.figleaf.com

www.ColdFusionJournal.comCFDJ AUGUST4

able commerce
www.ablecommerce.com

AUGUST CFDJ 5

Living on Internet time proves more and more interesting
every day. Sometimes it seems the online world is moving
so fast that were I to sleep late one day, I might wake up

and find that I’d missed an entire revolution – or at the very
least another “correction” to the stock market before which I
ought to have sold!

When speaking about the market and about new technolo-
gy, the word innovation always comes up – because that’s the politically correct
thing to tout. But what lies beneath the innovation? Money…very possibly lots of it.

Appearing on CNN’s financial news and saying you’re in it to get rich isn’t well
advised. The desire to have more, get more, make more and spend more – all while
working less – is the new American dream. Everyone I know, from programmers to
Web page designers to those doing data entry are doing more than just watching
this incredible growth with fascination; they’re all trying to get in on it – any way
they can.

Hardly a day goes by, or a dinner or even a simple night out, without a friend
pulling me aside. “What do you think of this?” “What the Internet needs is …” Or
best of all (and my personal favorite): “I’ve a great new idea that’ll make us both
rich.” Sure it will. They’ve come up with an idea, ranging from mundane to brilliant,
have done a quick Web search to see if it already exists and have usually already
gone through the final and seemingly most difficult stage of starting a new business
– picking a virgin domain name. Network Solutions records a new registration
about every five seconds – and while every domain name isn’t taken, it often seems
that every one that makes logical sense has been. (A word of advice on that subject:
keep your eyes on international domain name resellers like .CC, they seem poised
to catch on. Picking up a few key domains there surely couldn’t hurt….)

Okay, back to the story. Our dot-com gazillionaire wannabes have now safely
registered FantastikIdea12345.com (fantastic with the typo was all they could get
their hands on) and with their big plan in mind…they’re all ready to go.

What they need next is someone to make the site and that’s usually where I fit
into the picture. Having followed the world of ColdFusion with a tad of interest
they’re positive that no matter what site they want to create, ColdFusion can do it,
that it can do it fast and probably without going over the budget (also known as
their credit card limit). What’s great about CF is that, in the majority of cases,
they’re right. While not always the best solution for a site, and while using it alone
mightn’t be the most scalable of ideas, CF almost always can be made to work. (On
the topic of when ColdFusion isn’t the right choice, there was a great article by Ben
Forta a few issues ago that I highly recommend: “When Not to Use CF” [CDFJ, Vol.
2, issue 2, available in our online archives at www.sys-con.com/coldfusion
/archives/0202/forta.])

After the site has launched comes the hardest part of the process and the one
that no one has developed a formula or an exact science for as yet…getting traffic
to the site. The greatest site is only as great as the people coming to it, and if they
don’t know it’s there, then they certainly aren’t coming to it. There are several grand
options available for those with large amounts of funding, such as purchasing a
$100,000 ad on Yahoo!’s main page or buying an even more astronomically expen-
sive national primetime television ad (SuperBowl, anyone?). For those on a shoe-
string budget the choices are much slimmer – and potentially less effective. The
goal of most marketing campaigns is to create word-of-mouth buzz and the best
way to do that, big or small, is to make a good site: one that works reliably and pro-
vides visitors with value they can’t obtain elsewhere. I’m a firm believer that if you
build it well, people will come. As the early summer stock market shake-ups have
shown, what is rewarded most is profits (big surprise). But how do you generate the
profits? With a well-done site, of course. We here at CFDJ are dedicated to helping
you create just that.

EDITORIALADVISORY BOARD
STEVEN D. DRUCKER, JIM ESTEN, BEN FORTA,

STEVE NELSON, RICHARD SCHULZE, PAUL UNDERWOOD

EDITOR-IN-CHIEFROBERT DIAMOND
ART DIRECTORJIM MORGAN

EXECUTIVE EDITORM’LOU PINKHAM
MANAGING EDITORCHERYL VAN SISE
ASSOCIATE EDITORNANCY VALENTINE
PRODUCT REVIEW EDITORTOM TAULLI

TIPS & TECHNIQUES EDITORMATT NEWBERRY

WRITERS IN THIS ISSUE
CHARLES AREHART, SELENE BAINUM, KELLY BROWN,

TIM BUNTEL, ROBERT DIAMOND, BEN FORTA, HAL HELMS,
BENJAMIN PATE, CHRISTIAN SCHNEIDER, DUSTIN SMITH

SUBSCRIPTIONS
SUBSCRIBE@SYS-CON.COM

FOR SUBSCRIPTIONS AND REQUESTS FOR BULK ORDERS,
PLEASE SEND YOUR LETTERS TO

SUBSCRIPTION DEPARTMENT.

SUBSCRIPTION HOTLINE 800 513-7111
COVER PRICE $8.99/ISSUE

DOMESTIC $79/YR. (12 ISSUES)
CANADA/MEXICO $99/YR

OVERSEAS $129/YR
BACK ISSUES $12 EACH

PRESIDENT AND CEOFUAT A. KIRCAALI
VICE PRESIDENT, PRODUCTIONJIM MORGAN

VICE PRESIDENT, MARKETINGCARMEN GONZALEZ
GROUP PUBLISHERJEREMY GEELAN

CHIEF FINANCIAL OFFICERELI HOROWITZ
ADVERTISING ACCOUNT MANAGERROBYN FORMA
ADVERTISING ACCOUNT MANAGERMEGAN RING
ADVERTISING ASSISTANTCHRISTINE RUSSELL

ADVERTISING INTERNALISON NOVICK
GRAPHIC DESIGNERALEX BOTERO

GRAPHIC DESIGNERABRAHAM ADDO
GRAPHIC DESIGN INTERNAARATHI VENKATARAMAN

WEBMASTERBRUNO Y. DECAUDIN
WEB DESIGNERSTEPHEN KILMURRAY

CUSTOMER SERVICEELLEN MOSKOWITZ
JDJ STORE.COMAMANDA MOSKOWITZ

EDITORIALOFFICES
SYS-CON MEDIA, INC. 135 CHESTNUT RIDGE RD.,

MONTVALE, NJ 07645
TELEPHONE: 201 802-3000 FAX: 201 782-9600

COLDFUSION DEVELOPER’S JOURNAL (ISSN #1523-9101)
IS PUBLISHED MONTHLY (12 TIMES A YEAR)
FOR $79 BY SYS-CON PUBLICATIONS, INC.,

135 CHESTNUT RIDGE RD.,MONTVALE, NJ 07645

POSTMASTER
SEND ADDRESS CHANGES TO:

COLDFUSION DEVELOPER’S JOURNAL
SYS-CON MEDIA, INC.

135 CHESTNUT RIDGE RD.,MONTVALE, NJ 07645

© COPYRIGHT
COPYRIGHT © 2000 BY SYS-CON MEDIA, INC.

ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE
REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS,

ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY OR ANY
INFORMATION STORAGE AND RETRIEVAL SYSTEM,

WITHOUT WRITTEN PERMISSION.

FOR PROMOTIONAL REPRINTS, CONTACT REPRINT COORDINATOR.

SYS-CON PUBLICATIONS, INC., RESERVES THE RIGHT TO REVISE,
REPUBLISH AND AUTHORIZE ITS READERS TO USE

THE ARTICLES SUBMITTED FOR PUBLICATION.

WORLDWIDEDISTRIBUTION
BY CURTIS CIRCULATION COMPANY 730 RIVER ROAD,
NEW MILFORD, NJ 07646-3048 PHONE: 201 634-7400

DISTRIBUTEDIN USA
BY INTERNATIONAL PERIODICAL DISTRIBUTORS

674 VIA DE LA VALLE, SUITE 204, SOLANA BEACH, CA 92075
619 481-5928

ALL BRAND AND PRODUCT NAMES USED ON THESE PAGES
ARE TRADE NAMES, SERVICE MARKS OR TRADEMARKS

OF THEIR RESPECTIVE COMPANIES.

Making Money on Internet Time
BY ROBERT DIAMOND

ROBERT@SYS-CON.COM

EDITORIAL

ABOUT THE
AUTHOR
Robert Diamond is
editor-in-chief of
ColdFusion Developer’s
Journal.

www.ColdFusionJournal.comCFDJ AUGUST6

W
DDX exists to allow us to share data. With it your Cold-
Fusion application can “talk” to someone else’s Perl
script, and it in turn can talk to someone else’s
Microsoft Word document. Quite a powerful concept,

but I have to admit I haven’t had a lot of opportunities to use it.
Much of the focus on WDDX has centered on syndication.

“Web syndication is the idea that the content and commerce
assets of a corporate Web site can be exposed as services and
data to other Web sites, allowing sites to syndicate their value to
other Web sites” [Wddx.org]. Now don’t get me wrong. This is a
very appealing idea and certainly could revolutionize many
business relationships. Unfortunately, most of my clients are still
trying to figure out how to best use their own data themselves,
never mind sharing it with others! Accordingly, I’d like to take a
moment to look into how WDDX can be used for more mundane
data-sharing tasks.

I recently completed a large project in which users in many
different organizations within a large company contributed to a

fairly complex database. A rich Web interface was developed to
input records and was made as painless as possible considering
the number of fields to be completed. Only after we had trained
users from all of these disparate units did we realize that many
had grown their own local systems for collecting their own data,
mostly Excel spreadsheets. The users all balked at the idea of
reentering all of their information with the Web forms, asking,
“Why can’t we just upload our spreadsheets?”

Sure, we could have saved all of the spreadsheets as delimit-
ed text files and written an import procedure with CF or tried to
use ODBC drivers for Excel to get at the data. But WDDX and its
COM support seemed an attractive solution.

The Idea
Write a Visual Basic macro for Excel that would create a

WDDX packet for the entire spreadsheet and post the packet to
a ColdFusion template. The CF template would then deserialize
the packet and insert each record into the database.

How to use WDDX and Microsoft
Excel for bulk data entry

BY TIM BUNTEL

CFDJ FEATURE

www.ColdFusionJournal.com 7AUGUST CFDJ

The biggest drawback with such an implementation was that
all the contributors needed some custom software installed on
their PC (with the required COM objects). After that, though,
contributing all of their hard-gathered data was a breeze. If they
didn’t like our Web form, they could even continue to use their
spreadsheets and periodically upload their records.

The Method
In Excel

A VBA macro will use the WDDX COM object to serialize the
spreadsheet’s contents into a WDDX packet. It then uses the
freeware version of Softwing’s ASPTear object to send the packet
to the Web server. ASPTear is used in a number of examples in
the WDDX SDK, including the “Insert List of Books” Word Macro.
Of course, in the Word Macro example, the point was to get
information from the Web server and put it into the Word docu-
ment. Our project is the opposite: to take information out of
Excel and put it into the Web application.

To begin, register the two objects on the machine on which
the spreadsheet will be used by placing the WDDX_COM imple-
mentation files (wddx_com.dll, xmlparse.dll and xmltok.dll
wddx_com.dll) and ASPtear.dll in the Windows system directory.
Then open up a MS DOS prompt, use CD to navigate to the Win-
dows system folder where you placed the files, and type the fol-
lowing:

regsvr32 wddx_com.dll

and

regsvr32 ASPTear.dll

You’re now ready to start Excel and create a new spreadsheet.
The macro will use the column-heading values as column
names in the WDDX packet, so it’s important to inform users
what to enter in these fields. The order isn’t important, just the
values. Let’s say that you’re inputting information about books
in a fictional bookstore (original, huh?). The sheet will begin with
the column names as shown in Figure 1.

From the Tools menu choose Macro, then Visual Basic Editor.
After a moment, Visual Basic for Applications will appear and
you can begin writing the module. Right-click on Sheet 1 in the
VBA Project tree and select Insert, then Module. This will open a
blank editor window as shown in Figure 2.

Before creating the Macro, VBA must know that this proce-
dure will be referencing the COM objects that were installed ear-
lier. To do this, select References from the Tools menu. This will
open a dialog listing all available references on the machine. In
the list, find and check the box next to wddx_com 1.0 Type
Library. Click OK to return to the editor.

The Macro is created as a public subprocedure in VBA, so
begin by typing the following in the editor pane:

Public Sub SendToWeb()

After typing and pressing the enter key, the editor will write
the closing End Sub statement. Your variable declarations consist
of the WDDX objects, the ASPTear object and information about
the spreadsheet such as the range of used rows and columns:

Dim MySer As WDDXSerializer 'Allaire's WDDX serializer
Dim MyRS As WDDXRecordset 'Allaire's WDDX recordset

Dim xobj As Object, strRetval As String 'Softwing's ASPTear

Dim HowManyRows, HowManyColumns
Dim rng1 As Excel.Range

Once declared, instances of each object can be created:

' Create instance of WDDX.Serializer, Recordset and ASPTear object
Set MyRS = CreateObject("WDDX.Recordset.1")
Set MySer = New WDDXSerializer
Set xobj = CreateObject("SOFTWING.ASPtear")

The recordset has been created but is empty at this point.
Populating it will be done in three steps:
1. Add a column for each used column in the spreadsheet.
2. Add an empty row for each used row in the sheet.
3. Populate the values of each column row by row.

All three steps are concerned only with the area of the sheet
that has been used – a range that Excel exposes with the

“WDDX is a free,
open, XML-based

technology that
allows Web

applications
created with any

platform to easily
exchange data

with one another
over the Web”

–Wddx.org

www.ColdFusionJournal.comCFDJ AUGUST8

UsedRange variable. With that value,
count the used rows and columns
through which you will later loop. Notice
that the number of rows is decreased by
one since your column headers are in row
number one.

‘ Determine the used range of the sheet and
count the Rows and Columns
Set rng1 = ActiveSheet.UsedRange
HowManyRows = rng1.Rows.Count - 1
HowManyColumns = rng1.Columns.Count

The WDDX recordset needs one col-
umn for each column in the sheet. Loop
through each cell in the first row and call
the WDDX addColumn function to add
each column name to your recordset.

For counter = 1 To HowManyColumns
ThisColumn = ActiveSheet.Cells(1,

counter).Value
MyRS.addColumn (ThisColumn)

Next counter

The number of rows in the recordset is
the number of rows in the used range of
your sheet, again decremented by one

because the first row contains our field
names.

' Add a row for each row in the sheet
MyRS.addRows (HowManyRows)

So now you have the WDDX recordset
with columns named for each spread-
sheet column and an empty row for each
spreadsheet row waiting to be populated
with data. Looping through each row and
within the row looping through each cell,
every value is put into the recordset (see
Listing 1).

Once populated, the recordset is seri-
alized into a finished WDDX packet.

' Serialize it into a WDDX Packet
MyPacket = MySer.serialize(MyRS)

The packet is to be sent to ColdFusion
via HTTP Post with the ASPTear object. If
you were posting from a Web form, a
name/value pair would be sent. With
ASPTear, you specify the name/value
pair(s) as a PostData parameter in the
function.

Const Request_POST = 1
strPostData = "WDDXPacket=" & MyPacket
strRetval = xobj.Retrieve("http://www.your-
server.com/GetWDDXFromExcel.cfm", 1, str-
PostData, "", "")

strRetval will be set to whatever our
ColdFusion template returns after the
HTTP post is processed. This value may
be used for a verification message, per-
haps, informing the user that x number of
rows were received and processed (hope-
fully) successfully. Finally, end the Sub
routine by displaying the return in a mes-
sage box.

MsgBox (strRetval)

In ColdFusion
Meanwhile, back on the Web server, a

ColdFusion template is patiently waiting
to receive the HTTP post containing the
WDDX recordset.

When the post arrives, CF first uses the
CFWDDX tag to deserialize the packet out
of WDDX and into a format that it can use.
This is the “wddx2cfml” action. Since your

packet variable (strPostData) was named
WDDXPacket in the last piece of the VBA
Macro, that’s the variable used in your
CFWDDX tag.

<CFWDDX ACTION='wddx2cfml' input=#WDDXPack-
et# output='FromExcel'>

ColdFusion now has a recordset called
FromExcel.

Back in Excel, data was added to the
recordset by looping through each row
and through each column in each row.
Getting data out works in the same way,
except that it uses the FromExcel record-
set instead of the used range value.

In your real application the innermost
nest would contain the database insert.
For this demonstration, however, simply
output the name/value pairs and display
them back in Excel in our message box.

<cfloop query="FromExcel">
<cfloop index="ThisColumn" list="#FromEx-
cel.ColumnList#">
<cfoutput>#ThisColumn# = #Evaluate(ThisCol-
umn)#</cfoutput>
</cfloop>
</cfloop>

Notice that we use ThisColumn twice.
By itself, #ThisColumn# outputs the field
name. For its value, use #Evaluate(This-
Column)# (meaning “the value of the col-
umn called #ThisColumn#”).

And that’s it! No matter how many
records are in the spreadsheet or how the
columns are named or ordered, ColdFu-
sion can receive the information and do
with it whatever you can dream up. Later,
you might extend the process by having
CF return a WDDX recordset back to
Excel. This direction – from the Web to
office applications – is well documented.
Essentially, complex “conversations”
between desktop and Web server can take
place since you now have the “universal”
data language of WDDX.

About the Author
Tim Buntel is a senior Web developer in Providence, Rhode
Island.

FIGURE 2: The VBA editor

For Each rngTemp In rng1.Cells
If rngTemp.Row <> 1 Then
If rngTemp.Row <> WhatRow + 1 Then

WhatRow = WhatRow + 1
End If

ThisColumn = ActiveSheet.Cells(1, rngTemp.Column).Value

MyRS.setField WhatRow, ThisColumn, rngTemp.Value

End If

Next rngTemp

Listing 1: Adding each cell value to the WDDX recordset

tim@buntel.com

FIGURE 1: Empty sheet with column names

CODE
LISTING

◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗

The code listing for
this article can also be located at

www.ColdFusionJournal.com

www.ColdFusionJournal.com 9AUGUST CFDJ

intelaint
www.inteliant.com

www.ColdFusionJournal.comCFDJ AUGUST10

macromedia
www.macromedia.com

www.ColdFusionJournal.com 11AUGUST CFDJ

macromedia
www.macromedia.com

FOUNDATIONS

This month I’ve taken the liberty of assembling a small col-
lection of unrelated ideas that I think you might enjoy as
ColdFusion appetizers.

Mind Maps
Lately I’ve been playing with a

new piece of software called Visual
Mind (www.visual-mind.com) that
lets the user…ummm…well, it’s
hard to define. Visual Mind belongs
to a category of products called
mind-mapping software. Perhaps
the best way to explain it is to imag-
ine being able to create free-form
trees of information. Each node in
the tree can be a text note, a Web
page, a document on your hard
drive or an image. Take a look at
Figure 1, for example.

You can export this figure into a
text file that translates the visual
hierarchy into an outline, such as
the following:

Trade
1. Parties
1.1 Buyer
1.1.1 buyer-id
1.1.2 buyer-name
1.1.3 buyer-contractID
1.2 Seller
1.2.1 seller-id
1.2.2 seller-name
1.2.3 seller-contractID
....

I’ve found it useful for creating
XML Document Type Definitions –
those templates for XML docu-
ments – since it provides an easy
way to map the structures for a
given DTD. For domain experts this
graphical representation is much
easier to make sense of than the
DTD itself. Once I’ve got it right,
creating the DTD is simple stuff. I
imagine this tool could have a wide
range of uses.

Ini Files
I’ve gotten so used to using data-

bases for persistent storage that I
almost never consider any alterna-
tives. For some applications, or in
certain environments, databases
may not be the best choice.

One option to consider is the ini
file used by so many Windows pro-
grams to store information. Ini files
are organized like this:

[section name]
someName=someValue
anotherName=anotherValue

You can use your own ini file
easily enough by using two of the
more obscure ColdFusion func-
tions: SetProfileString() and Get-
ProfileString().

To set name/value pairs with
SetProfileString():

<cfset
SetProfileString('c:\inetpub\www-
root\test\preferences.ini', 'Compa-
ny', 'name', 'ABC, Inc.')>

This will create an entry that
looks like this:

[Company]
name=ABC, Inc.

If the file you specified doesn’t
already exist, ColdFusion will create
it for you.

To read specific info use the Get-
ProfileString() function:

<cfoutput>
This copy of Make-A-Zillion software
licensed to
#GetProfileString('c:\inetpub\www-
root\test\preferences2.ini','Compa-
ny','name')#
</cfoutput>

Hors d’Oeuvres Anyone?

BY
HAL

HELMS

An assortment of ideas to
whet your appetite

-Conditions

Number

-Shipping

-Parties

-Buyer

-Seller

Trade

buyer-id

buyer-name

buyer-contractID

seller-ID

seller-name

seller-contractID

mode

vehicle-id

gross

net

scale

shrink

moisture

test-weight

foreign material

damage

FIGURE 1: Graphical representation of XML.DTD

TABLE 1: Items in a typical shopping cart

SKU QUANTITY DESCRIPTION IMAGE PRICE

18874 1 How to Make a Zillion Dollars in Stocks ZD5886.gif $49.95

98833 1 Filing for Bankruptcy for Dummies BR9948.gif $29.95

www.ColdFusionJournal.comCFDJ AUGUST12

www.ColdFusionJournal.com 13AUGUST CFDJ

digital nation
www.dedicatedserver.com

www.ColdFusionJournal.comCFDJ AUGUST14

<!--
File: ShoppingCart.cfm
Author: hal.helms@TeamAllaire.com
-->

<!---
|| Responsibilities: I am a shopping cart object. I hold my
data in a 2D array whose "columns" are SKU, quantity,
description, image and price. My methods are newCart(),
addItemToCart(), removeItemFromCart(), getCartContents() and
clearCart().
||
--> [newItem]: a STRUCTURE (SKU, quantity, description,
image, price) on addItemToCart()
--> [existingItem]: a STRING (SKU) on removeItemFromCart()
++> [client.shoppingCart]: a 2D Array (SKU, quantity,
description, image, price)
||
END FUSEDOC--->

<cfswitch expression="attributes.method">

<!---
If my "newCart" method is called
-->
<cfcase value="newCart">
<cfset client.shoppingCart = ArrayNew(2)>

</cfcase>

<!---
If my "addItemToCart" method is called
--->
<cfcase value="addItemToCart">
<!--- Making sure I have what I need --->
<cfparam name="attributes.newItem">
<cfparam name="client.shoppingCart">

<!--- If I already have one of these SKUs, I’ll just
increment the quantity... --->

<cfset SKUfound=FALSE>
<cfloop from="1" to="#ArrayLen(client.shoppingCart[1])#"

index="i">
<cfif client.shoppingCart[1][i] EQ

attributes.newItem["SKU"]>
<cfset client.shoppingCart[2][i] =

IncrementValue(client.shoppingCart[2][i])>
<cfset SKUfound=TRUE>

</cfif>
</cfloop>

<cfif NOT SKUfound>
<cfset

ArrayAppend(client.shoppingCart[1],attributes.newItem["SKU"])
>

<cfset
ArrayAppend(client.shoppingCart[2],attributes.newItem["quan-
tity"])>

<cfset
ArrayAppend(client.shoppingCart[3],attributes.newItem["des-
cription"])>

<cfset
ArrayAppend(client.shoppingCart[4],attributes.newItem["image"
])>

<cfset
ArrayAppend(client.shoppingCart[5],attributes.newItem["price"
])>
</cfif>

</cfcase>
....
</cfswitch>

Listing 1

CODE
LISTING

◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗

The code listing for
this article can also be located at

www.ColdFusionJournal.com

Reusability
Code reusability is something of a

Holy Grail in software development.
There are several philosophies for
achieving reusability; the most
prominent one is object orientation.
One of OO’s tenets is that the best
way to organize code is to model the
very things that software is dealing
with. E-commerce sites have code
that models a customer, a shopping
cart and a product. What you can do
with and to these objects is deter-
mined by their interfaces.

ColdFusion isn’t an OO lan-
guage, but the idea of bundling up
or encapsulating code into models
of their real-world counterparts is
an idea worth exploring. For exam-
ple, take the notion of a shopping
cart. If your work involves e-com-
merce, you’ve probably built one of
these. In fact, you’ve probably built
several. The problem is that the var-
ious functions of a shopping cart
typically get built into the pages
that make up the checkout process.
So the idea of the shopping cart gets
mixed up with a checkout process
for a specific application. The next

time you need the functions of a
shopping cart, you find that your
shopping cart code is “smeared”
over many application-specific
pages. Now you’re cutting and past-
ing – or just writing it over again.

ColdFusion is certainly powerful
enough to make this redundant cod-
ing unnecessary. All that’s required is
a shift in thinking about the prob-
lem. Instead of scattering various
shopping cart functions in the
checkout code, try thinking of the
shopping cart as a self-contained
entity that has both data…and
methods for manipulating that data.

newCart
addItemToCart
removeItemFromCart
getCartContents
clearCart

Your shopping cart is now an
abstract thing, not tied to any specif-
ic application. Any application that
wants to implement your cart may
do so by using the specified methods.

This is where the biggest adjust-
ment is required in your thinking. If

you’ve implemented the shopping
cart data as a two-dimensional
array, your application page no
longer implements the specific
code needed to manipulate the
array. Instead, it would make a call
to the shopping cart asking it to
getCartContents.

You can implement this in a num-
ber of ways. I suggest you begin cre-
ating a separate page called “Shop-
pingCart”. This page doesn’t have
HTML code in it. It’s there to main-
tain the shopping cart data and to
respond to requests made of it. List-
ing 1 provides a portion of a Shop-
pingCart.cfm page.

Now, any application that needs
a shopping cart can use this one by
calling on one of its methods:

<cf_shoppingCart method="clearCart">

You can use this technique with
anything you can create a model
for. Score one for reusability.

ABOUT THE
AUTHOR
Hal Helms is a Team
Allaire member living
in Atlanta, Georgia. A
frequent writer on
ColdFusion and
Fusebox, he also offers
training and mentoring
on these subjects.

HAL.HELMS@TEAMALLAIRE.COM

FOUNDATIONS

www.ColdFusionJournal.com 15AUGUST CFDJ

developersnetwork
www.developersnetwork.com

www.ColdFusionJournal.comCFDJ AUGUST

We all know that locking is impor-
tant. Most of us even understand
why locks are needed. But exactly
where to use a lock, which lock type
to use and what code to put within
the lock remains confusing at best.

Part of the confusion stems from
changes Allaire made in ColdFusion
4.5 that in turn changed the recom-
mendations and suggested prac-
tices. Indeed, even my own recom-
mendations changed with that
release (as many of you CFUG
members are quick to point out).
And so, at the request of several of
you, and because I’ve helped con-
tribute to the confusion, I’ll cover
these topics in this column and try
to set the record straight.

Variables
Locks are used primarily with vari-

ables, so let’s start there. Variables are
kind of virtual containers in memory,
containers that are used to store data.
Look at the following code:

<CFSET first_name="Ben">

The <CFSET> tag creates (or over-
writes) a variable, in this case a vari-
able named first_name. first_name
can be thought of as a container
located somewhere in the memory
of the computer, a container that
now has the name “Ben” in it. To
access the data in the container you
simply refer to the container by
name, like this:

<CFOUTPUT>#first_name#</CFOUTPUT>

In this example I used a simple
variable. I could just have easily
placed an array or list in that con-
tainer, or even data as complicated
as an array of structures containing
arrays of structures, and so on.

Regardless of the type of data, one
thing is consistent: you refer to the
container (the variable) by a unique
name, and that name provides
access to the contents of the contain-
er at the moment it’s requested.

Understanding Threads
Before I go further, one other

topic must be mentioned briefly –
threads. ColdFusion is a high-per-
formance application server; it’s
designed to process many requests
at once. It does this by running lots
of concurrent tasks within the appli-
cation server, and each one handles
a single request at any given time.
These tasks are known as “threads,”
and ColdFusion is a multithreaded
application – in other words, Cold-
Fusion is designed to perform mul-
tiple tasks concurrently. (There’s
actually much more to threads than
that, but this explanation is ade-
quate for the issue at hand.)

Simultaneous Variable Access
ColdFusion supports several dif-

ferent data scopes. “Scope” defines

the life span (persistence) and visi-
bility of data. Let’s take a quick look
at five scopes:
1. VARIABLES: Used for data that

needs no special persistence.
Data in the VARIABLES scope
persists for the duration of the
processing of a request and is
automatically destroyed once the
request has completed. The data
is visible only within the thread
processing that request.

2. SESSION: Used for session vari-
ables, for data that relates to many
requests that together make up a
session. Data in the SESSION
scope persists until the session
times out. The data is visible to
any thread that processes requests
for that session, and it’s entirely
possible that multiple threads will
process requests for the same
SESSION (even though a SESSION
is mapped to a single client).

3. CLIENT: Also used for session
variables, but CLIENT is a little
different from SESSION. Unlike
SESSION variables, CLIENT vari-
ables aren’t stored in memory.
Rather, they’re stored in a data-
base (a database of your choice
or the Windows registry, which is
also a database of sorts). Data in
the CLIENT scope persists until
the client session times out. The
data is visible to any thread that
processes requests for that client
session, and it’s entirely possible
that multiple threads will process
requests for a single CLIENT ses-
sion (even though a CLIENT ses-
sion is mapped to a single client).

4. APPLICATION: Used for vari-
ables that are shared across com-
plete applications. Data in the
APPLICATION scope is visible to
all threads processing requests
for that application.

<BF>ON<CF>

ColdFusion locking, and the correct use of
the <CFLOCK> tag, seems to baffle even

the most seasoned CFers among us

Lock It or Lose It

BY
BEN

FORTA

16

“”
Locking is an
important CF

feature, and one
that serious

developers must
use in their
applications

Locking is an
important CF

feature, and one
that serious

developers must
use in their
applications

www.ColdFusionJournal.com 17AUGUST CFDJ

corda technologies
www.corda.com

www.ColdFusionJournal.com

5. SERVER: Used for variables that
are shared across all applications
running on the ColdFusion serv-
er. Data in the SERVER scope is
visible to every thread on the
server.

The variable first_name, created
earlier, was created in the VARIABLES
scope. As explained above, this scope
is processed by a single thread, and
as soon as that thread has completed
processing the request, the variable
is destroyed. As such, there is
absolutely no way more than one
request could access the data in the
VARIABLES.first_name container at
the same time.

But other scopes behave differ-
ently. The following code creates a
variable in the SESSION scope:

<CFSET SESSION.first_name="Ben">

As explained above, SESSION
variables can indeed be processed
by multiple threads at once. If you
use frames, if the user hits the
refresh button, if the underlying
network makes retries – there are
lots of conditions that could cause
the same SESSION to be processed
by more than one thread at any
given time.

This is where things get danger-
ous. Let’s go back to our container
analogy. If you were to put data
into a container at the exact
moment someone else was doing
so, what would happen? Both
writes couldn’t occur at the same
time, so something would get lost
– or worse, the container itself
could become corrupted. If the
<CFSET> statement above was
executed at the exact same time as
another <CFSET> statement that
was updating the same variable,
you’d likely corrupt server memo-
ry. If you’re lucky, you’ll just throw
an error, but you could also nega-
tively impact server operation as a
whole.

And it’s not just SESSION vari-
ables that are affected. APPLICA-
TION and SERVER scope variables
are even more susceptible to this
corruption as they’re always shared.
(CLIENT variables, however, aren’t
susceptible as they’re stored in a
database; the database handles
concurrency issues itself.)

Using Locks
How do you get around this

problem? The answer is to use a
lock. A lock does just that – it locks
a block of code (a block containing
a <CFSET> statement, for exam-
ple). Going back to our container
analogy, a lock acts as a guard mon-
itoring access to the container’s
contents. The guard’s job is to line
up all access requests in the order
they’re received, granting admis-
sion one request at a time, and only
after the previous access request
has completed.

In other words, locks can arbi-
trate code execution across multi-

ple threads, pausing execution as
needed. And yes, this could slow
down your application, but consid-
ering the alternative it’s a small
price to pay. Accessing a variable
(writing or reading) while it’s being
written by another thread is asking
for trouble.

The next code snippet sets the
same SESSION variable once again,
but this time locking it for the dura-
tion of the update:

<CFLOCK SCOPE="SESSION" TYPE="EXCLU-
SIVE" TIMEOUT="10">

<CFSET SESSION.first_name="Ben">
</CFLOCK>

Locking is implemented using the
<CFLOCK> tag, and any code
between the <CFLOCK> and
</CFLOCK> tags will be locked. The
SCOPE attribute specifies the scope
to be locked by specifying SESSION
as the scope. We’re instructing Cold-
Fusion to lock only the code execu-

tion for a particular SESSION. We
wouldn’t want to lock all sessions as
that would cause other operations to
pause unnecessarily (they wouldn’t
be updating this SESSION anyway).
The TYPE attribute specifies the lock
type. EXCLUSIVE means that no
other operations on the specified
SCOPE will be allowed while the lock
is being processed. The TIMEOUT
specifies the maximum time that
ColdFusion should wait when trying
to acquire a lock. If that timeout is
reached before the lock can be
acquired (perhaps because other
threads have the same scope locked),
the entire <CFLOCK> code block is
skipped (and an exception is thrown).

To lock the APPLICATION scope
you’d simply specify SCOPE=“APPLI-
CATION”. Doing so would lock the
APPLICATION scope so any other
attempt to access APPLICATION
data would be paused. The same is
true for SERVER.

It’s important to note that
<CFLOCK> will do its job if all
appropriate code is enclosed within
<CFLOCK> tags. If somewhere in
the code you had a <CFSET> state-
ment that didn’t use a <CFLOCK>, it
could access the variable even
though it was locked. For locking to
work, all accesses must be managed
by <CFLOCK> statements.

SCOPE vs NAME
In the example above I used

SCOPE=“SESSION” to lock my
<CFSET> statement. Three scopes
are supported: SESSION, APPLICA-
TION and SERVER. Specifying a
SCOPE of SESSION locks any other
accesses for the same SESSION
only. Specifying a SCOPE of APPLI-
CATION locks any other accesses
for the same APPLICATION (as
named in the <CFAPPLICATION>
tag, usually in APPLICATION.CFM).
Specifying a SCOPE of SERVER
locks any other accesses for SERV-
ER scope locks server-wide.

ColdFusion also supports locking
by NAME. Using this method, you
provide a name to identify the activ-
ity performed in the locked code,
and only locks with the same NAME
will be locked. Exactly what opera-
tions are locked within the lock is
entirely up to you. All <CFLOCK>
does is ensure that no two blocks of
code with the same NAME are exe-

<BF>ON<CF>

CFDJ AUGUST18

“”
Incorrect lock
use, of course,
can bring your
application to
its knees. That
fine line must

be walked

Incorrect lock
use, of course,
can bring your
application to
its knees. That
fine line must

be walked

cuted at once. Using NAME gives
you a greater level of control over
lock granularity, but with that con-
trol comes additional risk. If you
mistakenly use different names for
two locks that access the same data,
you won’t be locking at all.

The ability to lock code by scope
was introduced in ColdFusion 4.5,
and it’s the preferred way to lock
code that accesses potentially
shared variables.

Read-Only Locks
Locking is really an issue only

when variables are being written to.
Going back to our container analo-
gy, if multiple users looked into the
container at the same time to see
what was in it, no harm would be
done. The same is true of read
access to shared variables.

Some languages support the use
of constants, special variables that
are actually not variable at all as
they can’t be changed. ColdFusion
has no concept of constants, so CF
developers typically create variables
in the APPLICATION scope (usually
in the APPLICATION.CFM file sur-
rounded by a <CFIF NOT IsDe-
fined()> check) and are careful
never to overwrite them. If an appli-
cation contained variables like this,
variables that were never updated
(after initial creation), you wouldn’t
really need to lock them at all. But
you’d have to be 100% sure that an
update wouldn’t occur, realizing
that there’s nothing you can do pro-
grammatically to prevent that.

What to do? Locking all read
accesses (every time you refer to
#SESSION.first_name#, for exam-
ple) with exclusive locks imposes a
significant performance loss, and
the risk may not be worth it. So you
could opt not to lock variable reads.

But there’s always the chance
that someone will edit the code,
and the variable that was never sup-
posed to be updated…well, what if
some new code now updated it?

To address this problem, Cold-
Fusion supports an additional lock
type, READONLY. A READONLY
lock doesn’t actually lock anything
unless an EXCLUSIVE lock is being
processed at the same time. Only
then will the READONLY lock pause
until the EXCLUSIVE lock has com-
pleted. In other words, READONLY

locks have no real performance hit
associated with them. They are
essentially ignored until an EXCLU-
SIVE lock is in effect.

Other Operations Needing Locks
Variables aren’t the only things

that need locking. Any code with
potential concurrency issues should
be locked. Examples of this include:
• Accessing files with <CFFILE> if

other processes could be access-
ing the same data file

• Calling code that isn’t multi-
thread safe (some CFX tags, for
example)

• Connecting to remote sites via
<CHTTP> if those sites don’t
allow concurrent connections

In all of these examples, locking
the code block can avoid concur-
rency problems. But instead of lock-
ing by SCOPE, these operations
should be locked by NAME.

Locking Tips
Locking is important and must be

used. But locking slows your appli-
cation, as already mentioned. Locks
must be used carefully, and they
must never be overused. Here are
some pointers to keep in mind:
• Don’t lock code unnecessarily,

but don’t create and drop locks
too frequently. It’s a fine line to
walk, but if you find yourself
needing to lock two variables
with some other lengthy process-
ing in between them (that does-
n’t need locking), you might be
better off using two locks so you
don’t keep locks active when
they’re not needed.

• If you find yourself having to per-
form complex operations on
locked variables (for example,
complex string processing, loop-
ing or WDDX decoding), consid-
er making local (VARIABLES)
copies of the data and perform-
ing the processing on the local
copy, then using a lock only
when saving the local copy back
to the shared variable.

• APPLICATION locks should be
used sparingly as they typically
apply to lots of code. If you need
to lock only part of the APPLICA-
TION scope, consider using the
NAME attribute instead of
SCOPE. This will give you more

granular control over exactly
what gets locked and when,
which in turn can prevent
unnecessary locking (or unnec-
essarily long locking times). Of
course, as explained earlier,
using NAME comes with a risk.
You must be sure that different
names aren’t used for code that
accesses the same data. (The
same thing applies to SERVER
variables.)

• ColdFusion 4.5 supports automat-
ic locking modes in which Cold-
Fusion locks variables for you.
There’s a bit of overhead in using
auto-locking, plus you’ll lose the
potential performance gains that
could be attained by more granu-
lar locking. As a rule, if perfor-
mance is an issue (and when isn’t
it?), don’t use these options. You’ll
be able to squeeze a bit more per-
formance out of your application
by doing it yourself.

• ColdFusion 4.5 also supports a
mode called Full checking. In this
mode no locking occurs auto-
matically. Instead, ColdFusion
throws an error if a lock isn’t used,
helping you eliminate potentially
missed locks. But this option
can’t be used with NAME locks –
it’ll always throw errors on those.

The common theme is that locks
should be used, but they must be
used carefully. And careful use
requires a good understanding of
what locks are, what they do and
how your application should use
them.

• • •
Locking is an important ColdFu-

sion feature, and one that serious
developers must use in their appli-
cations. Without locking there’s a
very real risk that data corruption
will occur, and this can impact serv-
er stability.

Incorrect lock use, of course, can
bring your application to its knees.
That fine line must be walked. Yes,
there are performance penalties
involved, but every decision involves
some kind of trade-off.

What you do is your choice. My
advice? Lock it or lose it.

ABOUT THE
AUTHOR
Ben Forta is Allaire
Corporation’s product
evangelist for the
ColdFusion product line.
He is the author of the
best-selling ColdFusion
4.0 Web Application
Construction Kit and
its sequel, Advanced
ColdFusion 4.0
Development, as well
as Sams Teach
Yourself SQL in 10
Minutes. He recently
released Allaire Spectra
E-Business
Construction Kit, and
is now working on books
on WML and JSP.

BEN@FORTA.COM

www.ColdFusionJournal.com 19AUGUST CFDJ

During a recent intranet project, I encountered the need for
live reports of all currently open user sessions within an
application.

The goal was for me to be able to
see how many users were currently
online with an open session when
rolling out new templates from the
development server to the produc-
tion server. That way I would be
able to determine whether it was a
good idea to update the live pro-
duction server or if it would be bet-
ter to wait until the late evening (of
course, I’d probably need to call the
local pizza service, instead of hav-
ing a nice dinner with my girl-
friend). It would put an end to the
numerous nights behind the PC if I
could develop some kind of a live-
session monitor that enabled me to
see how many users were currently
online with running sessions.

Overview of Sessions
Sessions are frequently used by

ColdFusion developers to track a cer-
tain state of a connection over multi-
ple pages. Since HTTP is by nature a
stateless protocol, meaning it has no
built-in mechanisms to track a ses-
sion over multiple pages (instead,
each page request opens a new con-
nection to the host), the guys from
Allaire opted to use cookies and issue
unique IDs to each client and incor-
porate this into the popular session
framework. That way developers can
simply set any variable in one tem-
plate into the session scope: <cfset
SESSION.userName = “John”> and
access them in another template
called by the client afterwards. This
session framework, as part of the CF
Web application framework, is acti-
vated within the Application.cfm file
by using the following statement:

<cfapplication name="My_Test_App"
clientmanagement="yes" sessionmanage-
ment="yes" sessiontimeout=#Create-
Timespan(0,0,20,0)#>

This statement sets the default
timeout of a session to 20 minutes
by using the CreateTimespan()
function. It means that after 20
minutes of inactivity the client’s
session is closed. When returning
to the application, this timeout-
event should be caught and the
user sent back to the login page.
Setting a session timeout is mainly
used for security reasons; it’s also
used on large-scale sites since
keeping sessions open for a long
time would produce too much
overhead on the server. Now I’ll
present a solution on how to live-
monitor these sessions.

A Simple but Effective Solution
As difficult as it sounds to devel-

op a live monitor of all open ses-
sions, it was (to my own surprise)
done quite easily with the use of
ColdFusion mechanisms and tech-
niques. All we need are three ingre-
dients: applications-scoped vari-
ables, structures and the Applica-
tion.cfm file.

Application-Scoped Variables
The variables set in the applica-

tion scope, like <cfset APPLICA-
TION.systemColor = "Blue">, are
accessible (read and write) by all
clients accessing the application,
as opposed to session-scoped vari-
ables that are accessible (read and
write) only by each client sepa-
rately.

Structures
These kinds of variables are like

associative Arrays, which have a set
of keys in them mapped to certain
values. They could be described as a
bunch of key-value pairs held with-
in one variable that are set the fol-
lowing way:

<cfset myStruct = StructNew()> <cfset
myStruct["color"] = "Blue">

Alternatively the last statement
could be coded another way, using
the ColdFusion structure functions:

<cfset dummy = StructInsert(myStruct,
"color", "Blue", true)>

where the last boolean parameter
(here true) indicates whether or not
existing keys should be overwritten.
Note that CF has a very rich set of
structure functions, including a
mechanism of looping over struc-
tures that we’ll also be using.

Application.cfm File
Our next basic ingredient is the

Application.cfm file, the root for
enabling the ColdFusion Web appli-
cation framework. It has a useful
characteristic: its content is execut-
ed before any page request within
an application.

Having listed these three ingre-
dients, I can now tell you the recipe
for a live-session monitor. In brief:
we need to set some kind of flag
when a user is active. When we
timestamp this flag we can also
determine if the user’s session has
timed out (and is therefore no
longer active). CF treats every page
request within an application as an
event to set the session timeout
ticker back, which means it sees
that the user is still active and his or
her session should be kept active
too. The easiest way to set the flag is
to do so in the Application.cfm file,
because this file is executed on
every page request.

As we wish to track every user of
an application, this flag should be
placed into the application scope so

Live Monitoring of User Sessions

BY
CHRISTIAN

SCHNEIDER

CF CODE & COMMENT

Avoid the need for late-night pizzas…
by knowing how many users are

currently active in your apps

www.ColdFusionJournal.comCFDJ AUGUST20

www.ColdFusionJournal.com 21AUGUST CFDJ

conceptware
www.concepware.com

www.ColdFusionJournal.comCFDJ AUGUST

CF CODE & COMMENT

it can hold information about all cur-
rent active users. Besides (as you
might already guess from my ingre-
dients list), this flag is a structure log-
ging every active user’s timestamp
with some unique part as the key and
the current timestamp as its value.
This unique key could be a user ID
derived from the user’s login or just
the user’s IP address (see Listing 1).

Of course, if you run a site that
asks every user to log in (as most
intranet applications do), taking the
user’s login ID here would be nice,
because that way your session
monitor would show you not only
the IP addresses of all active users
but also their actual user names. I
decided to take the user’s IP address
as the key in Listing 1 for demon-
stration purposes and to keep the
code snippet general so you can
take it and run it on your site.

The rest is a simple reporting
page that loops over the mentioned
structure and checks whether each
logged session is still active or has
timed out, and presents the neatly
formatted results. As we have the
timestamp along with the user’s IP
address, it’s also possible to set
some thresholds for color-coding
the report according to how long a
session was inactive.

Explaining the Code
Now I’ve presented my idea for

developing the session monitor, let’s

look inside the code. Basically all we
need is a code snippet to place into
the Application.cfm file shown in
Listing 1 and a simple reporting
page that presents a nicely format-
ted session report (see Listing 2).

First I’d like to comment the
Application.cfm snippet shown in
Listing 1. The first cfset statement
sets a locally scoped variable,
theTimeout, to a time span by
using ColdFusion’s CreateTime-
span() function. This is necessary to
define the timeout for CF’s session
framework activated in the next
statement. You might wonder why I
decided to use a locally scoped vari-
able instead of directly using Create-
Timespan() in the cfapplication tag,
but as I need the timeout value in
the reporting page to determine
when a user’s session has timed out,
setting a variable and referencing it
makes more sense.

The next block of code is the ses-
sion monitor’s heart; it’s surrounded
by a cflock statement because prop-
er locking of application-scoped
variables is a good style of writing
code and a must to guarantee con-
sistency between simultaneous
accesses in large-scale sites. Inside
the heart the session monitor gener-
ates the structure holding the
tracked information (APPLICA-
TION.SessionTracker) if it doesn’t
already exist. The last and most
important statement:

<CFSET dummy = StructInsert(APPLICA-
TION.SessionTracker, CGI.REMOTE_ADDR,
Now(), true)>

takes the user’s IP address as a key
and the current time as its value and
inserts this into the session moni-
tor’s structure. If the key (meaning
the user) already exists in the struc-
ture, it’s automatically updated. This
feature is made available by the
boolean parameter true of StructIn-
sert()’s parameters. As this snippet is
executed on every page request, it
continuously updates the structure
that holds all active users and is fed
into the reporting page (shown in
Listing 2 and explained next).

The code in Listing 2 is just a
sample reporting page that uses the
session monitor’s application-
scoped structure holding all active
users with their last activity time-
stamped. It shows an HTML table
listing all active users and their inac-
tivity time. This report is color-coded
according to how long a user was
inactive (see Figure 1). The threshold
values for coloring the report might
be individualized depending on how
granular you want the report to be
colored (just take mine as sample
values). Besides the surrounding
cflock statement to guarantee con-
sistency for simultaneous accesses
and the HTML code to format the
table, Listing 2 contains the follow-
ing interesting code: inside the table
the reporting page loops over the
session monitor’s structure and
determines the time of each user’s
last activity to decide whether the
user’s session is still active or has
timed out. This is achieved by com-
paring the time of the user’s last
activity plus the timeout value
against the current time. If the
user’s session has timed out, the
entry is removed from the session-
tracker using the StructDelete()
function. Otherwise the still-active
session is written onto the report
along with the user’s inactivity time,
colored according to how long he or
she was inactive. That way you get a
live report showing all active users
(see Figure 1).

Introducing OnRequestEnd.cfm
Introduced with ColdFusion 4.01,

OnRequestEnd.cfm is the counter-
part of Application.cfm. As the name

22

FIGURE 1: Sample view of the session monitor

www.ColdFusionJournal.com 23AUGUST CFDJ

suggests, OnRequestEnd.cfm is exe-
cuted at the end of each request, like
Application.cfm at the beginning.
This means you’re free to decide
whether you’d like to place the ses-
sion monitor’s heart (the block of
code inside the cflocks in Listing 1)
into the Application.cfm or OnRe-
questEnd.cfm file.

Further Ideas
Having presented my idea of a

simple session monitor, I’d like to
conclude with a few thoughts and
enhancements based on the ability
to track user sessions.

Of course, the first (and probably
easiest) enhancement would be to
define a more detailed report that
could be sorted (by inactivity time)
and filtered (by usergroups). This
should be implemented easily using
the handy CF functions for structure,
array and list handling. I decided not
to implement it here because I want-
ed to keep the code simple.

If your monitored application
supports a defined group of users
that have to log in, another straight-
forward enhancement would be to
log by user IDs instead of IP address-
es. This enables grouping based on
how many users from any given
department are currently online.

Using the Application.cfm file
more intensively with the aware-
ness of who is currently active, it’s
also possible to develop some kind
of instant messaging between
online users by setting an applica-
tion-scoped message structure
indexed by user IDs with the mes-
sages as their values. Whenever a
user accesses a page of the applica-
tion that has instant messaging, this
queue is checked for messages for
the current user.

Knowing how many users are
currently active in your apps is also
valuable information for licensing
and security issues. For example,
you can prevent applications you’ve

sold from being used by more
simultaneous online users than
your customer has purchased
licenses for (depending on your
licensing model). Knowing how
many simultaneous users are
accessing your application can also
be used to initiate certain mission-
critical tasks whenever too many
users are active, such as automati-
cally caching queries, activating the
sleeping backup server to become
part of the productive cluster or just
sending an e-mail warning to your
system administrator to watch the
servers.

These are only a few aspects of
this topic. I’d be interested in any
feedback and ideas you may have so
I can incorporate them and make the
session monitor a handy feature
every application should have.

ABOUT THE
AUTHOR
Christian Schneider is
a self-employed
ColdFusion developer with
over three years of
intensive experience in
developing CF-based
intranet applications
for banks and logistic
corporations.

MAIL@CHRISTIAN-SCHNEIDER.DE

<cfset theTimeout = CreateTimespan(0,0,30,0)>

<!--- Set Application name and options --->
<CFAPPLICATION NAME="My_Test_App"

CLIENTMANAGEMENT="YES"
SESSIONMANAGEMENT="YES"
SESSIONTIMEOUT=#theTimeout#>

<!--- Session-Tracker Code --->

<cflock name="#APPLICATION.applicationName#"
type="Exclusive"
timeout="20"
throwontimeout="Yes">

<!--- If Session-Tracker does not exist,
generate it --->

<cfparam name="APPLICATION.SessionTracker"
default=#StructNew()#>

<!--- Log current user --->
<CFSET dummy = StructInsert(APPLICATION.SessionTracker,

CGI.REMOTE_ADDR, Now(), true)>

</cflock>

<html>
<head>

<title>Live Session-Tracker Report</title>
</head>
<body><basefont face="Arial">
<cfoutput>

<h3>Live Session-Tracker Report</h3>

<cflock name="#APPLICATION.applicationName#"
type="Exclusive"
timeout="20"
throwontimeout="Yes">

<table border="2" cellspacing="0" width="95%">
<tr bgcolor="##cccccc">

<td>User (by IP-address)</td>
<td>Session-Status</td>

</tr>

<CFLOOP collection=#APPLICATION.SessionTracker#

item="aUser">
<cfset onlineSince = StructFind(APPLICATION.Session-

Tracker, aUser)>

<CFIF DateCompare(onlineSince+theTimeout, Now()) EQ 1>
<!--- User’s last activity lies within session-time-

out,
so his/her session is active --->

<cfset inactiveSince = DateDiff("n", onlineSince,
Now())>

<!--- The threshold for coloring the report
may be set individually: --->

<cfif inactiveSince LTE 2>
<cfset theColor = "Red">

<cfelseif inactiveSince LTE 5>
<cfset theColor = "Yellow">

<cfelse>
<cfset theColor = "Cyan">

</cfif>

<!--- Output of current user in report --->
<tr>

<td bgcolor="##eeeeee">#aUser#</td>
<td bgcolor="#theColor#">

inactive since #inactiveSince# mins
</td>

</tr>

<CFELSE>
<!--- User’s session has timed-out, so we can

delete his IP from the Session-Tracker --->

<cfset dummy = StructDelete(APPLICATION.Session-
Tracker, aUser)>

</CFIF>
</CFLOOP>

</table><p>
#StructCount(APPLICATION.SessionTracker)# Users online

</cflock>

</cfoutput>
</body>
</html>

Listing 2: SessionReport. cfm

Listing 1: Application. ctm

CODE
LISTING

◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗

The code listing for
this article can also be located at

www.ColdFusionJournal.com

CF TECHNIQUES

For many developers there comes a time when you think your options are lim-
ited. You can “risk” a completely dynamic application or use it as sparingly as
possible, thus limiting your capabilities.

How about combining the advan-
tages of a static page with those of a
dynamic page through the power of
ColdFusion? This article shows you
how.

As you probably know, static
pages have many advantages over
dynamic pages, including:
• Dependability: After you’ve creat-

ed a static page, the output will
generally remain the same, prac-
tically eliminating the possibility
of an embarrassing error.

• Speed: Static cuts out the time-
consuming step of processing a
dynamic template, which reduces
the response time of the page.

• Search engine indexing: For the
most part, search engines can
index ColdFusion pages. However,
when you have a veritable string
attached (like index.cfm?id=1), the
page can’t be indexed.

Where You Can’t Use Static
Static pages can be updated only

when triggered or scheduled to do
so; therefore change-critical or heav-
ily updated pages should probably
remain dynamic. Pages that involve
user-supplied information (search-
ing or client input-dependent pages)
can’t be static.

How to Use ColdFusion Functions
to Generate Static Pages

By merely using the CFHTTP
and CFFILE functions, you can gen-
erate static pages. You’ll need:
1. A directory to store templates

that will have their exact output
generated into static pages. I’ll
use the directory c:/root/temp/
for this example.

2. A file that does the actual genera-

tion of static pages but isn’t acces-
sible to all users. For this example
I’ll name the file dyn2static.cfm.

The sample generation of a basic
static page is:

<CFHTTP
URL="http://www.domain.com/temp/stat-
ic_page_1.cfm" METHOD="Get">
<CFSET IndexBuild = "#CFHTTP.FileCon-
tent#"> </CFHTTP>

<CFFILE ACTION="WRITE"
FILE="c:/root/index.cfm"
OUTPUT="#IndexBuild#"
NAMECONFLICT="overwrite">

Easy enough! You now have a sta-
tic page in your main directory
(c:/root/) that mirrors the dynamic
page in your temporary directory
(c:/root/temp/). Note: Make sure
your links are mapped to the direc-
tory in which you’ll be building the
new files; otherwise they won’t work
in a new directory. The generated file
(for this example I used index.cfm)
doesn’t have to have the “.cfm”
extension but can use “.html”; how-
ever, I like to use it just to show that
I’m using ColdFusion.

More Complicated Areas
The preceding example shows

how you could morph a cumber-
some dynamic page into a static
page. But how do you solve the
problem of veritable strings on
your dynamic files? Here’s how:
when you create a dynamic page
with a dynamic link, you have a
receptor page that takes the verita-
ble string and processes it. For
example, on static_page_2.cfm you

may have something that looks like
this:

<CFQUERY DATASOURCE="LINKS"
NAME="GetLinks"> SELECT Link_Name,
Link_ID
FROM
Links ORDER BY Link_Name </CFQUERY>

 <CFOUTPUT QUERY="GetLinks">
<A
HREF="static_page_3.cfm?link_id=#link
_id#">#link_name# </CFOUTPUT>

When you use generated links
you can’t index them with search
engines, which limits your exposure.
Logically, there’s only one other
solution to this problem: use sepa-
rate pages for each link. Of course,
to manually create a separate page
for each link would be more of a
problem than it’s worth. Here’s how
to combine the existing method of
dynamic links with the generation
of static pages.

First, edit the dynamic template to
make links to static files. Change the
above code to something like this:

<CFQUERY DATASOURCE="STORE"
NAME="GetProducts"> SELECT
Product_Name,
Product_ID FROM Products ORDER BY
Product_Name </CFQUERY>

 <CFOUTPUT QUERY="GetProducts">
<A HREF="#Replace(product_name,
" ",
"_")#/">#product_name# </CFOUT-
PUT>

which would return something like
this:

Dynamic Goes Static

BY
DUSTIN
SMITH

Create successful dynamic applications
that can be turned into static pages

with ColdFusion

www.ColdFusionJournal.comCFDJ AUGUST24

 <A HREF="A_Sample_Prod-
uct/">A Sample Product ...

As you can see, instead of a num-
ber, a directory with the link’s name
represents the link. The only differ-
ence is that the spaces between
each word are replaced by an under-
score; this is because most servers
(and clients) don’t respond to spaces
in file names. Another thing to be
careful of is names over 64 charac-
ters that could trigger an error. To
resolve this, use the left() function:

#Left("Product_name", "64")#

If you prefer, you could also gen-
erate pages/directories based on
the product ID, which you can be
sure is always unique.

For this example I chose to use
the field’s name as a common link.
However, you could use another
field if it’s more suitable for your
project. Just make sure it’s some-
thing unique from each field. You
don’t have to generate a directory
for each link, as I’m doing; you can
choose alternative methods such as
individual .html files. I chose this
method since it would be the most
informative for any situation.

Now that you’ve made the page
“static ready,” we’ll work on the

template that does the actual build-
ing (see Listing 1).

It’s usually a good idea to include
some type of status output so you
can pinpoint errors if they occur
(see Listing 2).

After this template runs, it cre-
ates a directory for each product
name and an index file inside each
directory. As I mentioned before,
this setup wouldn’t work if there
were products with the same name.
It would probably be wise, although
messy, to use the ID field as the
name of the file.

You can now create successful
dynamic applications with ColdFu-
sion that can be turned into static
pages. There are many different
extensions of this ability that you can
use. I’ll suggest a couple of my own.

Scheduling
You can automatically schedule

the ColdFusion server to run the
template that builds the static
pages by using CFSCHEDULE or
the scheduling feature in the
Administration panel. If you sched-
ule the page to be processed, you
won’t have to load the page manu-
ally; it’ll be done automatically at a
given time or date. You can also run
additional preprocessing scripts to
ensure that your pages don’t have

errors and other bad outputs. New
versions of the ColdFusion server
already have a function in the
Administration panel to create stat-
ic pages from dynamic ones; how-
ever, you can’t check for errors
before processing and you’ll need
to follow the previous examples for
pages with dynamic links.

Error Checking
A good way to ensure that your

visitors will never encounter an
embarrassing error is to scan for
them before you build the static
page. In the code in Listing 3 the
returned template’s HTML is
scanned for a ColdFusion error. If
no error messages are found, the
page is built. If an error is encoun-
tered, no static page is generated
and an e-mail is sent to the admin-
istrator advising him or her to cor-
rect the problem (see Listing 3).

• • •
I’ve now covered most areas of

static page generation with Cold-
Fusion. If you have any problems
with any of the topics covered
above, e-mail me and I’ll be glad to
help.

ABOUT THE
AUTHOR
Dustin Smith is the
founder of Digital Studios,
an Internet consulting
company. A member of
the Allaire Alliance for
ColdFusion programming,
he has worked with
ColdFusion for the
past two years.

SALES@JEXNET.COM

www.ColdFusionJournal.com 25AUGUST CFDJ

<CFQUERY DATASOURCE="Store" NAME="GetProducts"> SELECT Prod-
uct_Name,
Product_Id FROM Products </CFQUERY>

<CFLOOP QUERY="GetProducts">

<CFSET ProdName = "#Replace(GetProducts.Product_Name, " ",
"_")#">

<CFHTTP
URL="http://www.domain.com/temp/products.cfm?product_id=#Get-
Products.pro
duct
_id#" METHOD="Get"> <CFSET GetPage = "#CFHTTP.FileContent#">
</CFHTTP>

<CFOUTPUT> Pinging Product [ID=#GetProducts.product_id#]

</CFOUTPUT>

<CFIF FileExists("c:\root\store\#ProdName#\index.html") IS
"NO">
<CFDIRECTORY ACTION="CREATE" DIRECTORY="c:\root\store\#Prod-
Name#">
</CFIF>

<CFFILE ACTION="WRITE" FILE=" c:\root\store
\#ProdName#\index.html"
OUTPUT="#GetPage#" NAMECONFLICT="overwrite">

<CFOUTPUT> Building Page [#Product_Name#]
 </CFOUTPUT>

</CFLOOP>

<CFHTTP URL="http://www.domain.com/page.cfm" METHOD="Get">
<CFSET
GetPage =
"#CFHTTP.FileContent#"> </CFHTTP>

<CFIF #FindNoCase("Error Occurred", GetPage)# = 0>

NO Error. Build Pages

<CFELSE>a

<CFMAIL TO="admin@domain.com" SUBJECT="urgent, error!">
Fix me!
</CFMAIL>

</CFIF>

Listing 3

Listing 2

Listing 1

CODE
LISTING

◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗

The code listing for
this article can also be located at

www.ColdFusionJournal.com

www.ColdFusionJournal.comCFDJ AUGUST26

Deleting Data with ColdFusion
Unlike adding and updating data,

ColdFusion provides no efficient way
to delete data. DELETE is always a
dangerous operation, and ColdFusion
developers didn’t want to make it too
easy to get rid of the wrong data.

To delete data in a ColdFusion
template you must use the SQL
DELETE statement, as shown in List-
ing 10 [Ed. Note: Listings 1–9 and Fig-
ures 1–4 can be found in Part 1 (CFDJ,
Vol. 2, issue 7)]. The code first checks
to ensure that an employee ID was
passed; it terminates if the Employ-
eeID field is not present. If an employ-
ee ID is passed, a <CFQUERY> is used
to pass a SQL DELETE statement to
the ODBC data source.

The following code deletes the
record for the employee ID passed:

DELETE Employees WHERE EmployeeID =
#EmployeeID#

If EmployeeID were 7, the code
would translate to the following and
the employee with an employee ID of
7 would be deleted from the Employ-
ees table:

DELETE Employees WHERE EmployeeID = 7

Reusing Forms
You can now add to as well as

update and delete from your Employ-
ees table – but nothing lasts. Just
when you thought you could relax and
take a day off, Human Resources
needs you to provide access to addi-
tional table columns.

You start to modify both the
Employee Add and the Employee
Update forms. You make sure that the
additional five fields are added to
both templates and that they are in
the same order, spelled the same way,
and are the exact same length.

Then you realize that you are doing
everything twice! There is really very
little difference between the Add and
Update forms, except that one needs
existing values prefilled for updating.
The form itself is identical.

With all the effort you have gone to

in the past articles to prevent any
duplication of effort, this seems coun-
terproductive.

Indeed it is.
The big difference between an Add

and an Update form is whether the
fields are prefilled to show current val-
ues. Using ColdFusion conditional
expressions, you can create a single
form that can be used for both adding
and updating data.

A new and improved Add and
Update form is shown in Listing 11.

Understanding Conditional Forms
Now analyze Listing 11. The first

thing you do in it is determine if an
insert or an update is required. How
can you know that? An employee ID
must be passed in order for a record to
be updated; otherwise ColdFusion
would have no idea which record
needs updating. It makes no sense to
pass an employee ID when adding a
row; the new employee’s ID will be
assigned when the data is actually
inserted into the table.

You can therefore make a safe
assumption that this is an update
operation if an employee ID is present;
if not, it’s an addition.

The first line in the template checks
to see if EmployeeID was specified:

A primer in dynamic page
development

A Beginner’s Guide to ColdFusion

FROM THE BOOK
BY BEN FORTA

CFDJ SPECIAL FEATURE

This article has been adapted from the second part of
Chapter 13 of ColdFusion 4 Web Application Construction
Kit by Ben Forta. Published by permission of Macmillan
Publishers Ltd. and the author. Chapter 11 appeared in two
parts in the February and March issues of ColdFusion
Developer’s Journal. Parts 1 and 2 of Chapter 12
appeared in April and May. Part 1 of this article appeared
in July. This article concludes the series.

Part 2

Using Forms
to Add or
Change Data

www.ColdFusionJournal.com 27AUGUST CFDJ

<CFIF IsDefined("EmployeeID") >

This code sets a variable called
NewRecord to Yes or No based on its
existence. The following code sets
NewRecord to No because the IsDe-
fined("EmployeeID") test returned
TRUE.

<CFSET NewRecord = "No">

If IsDefined("EmployeeID") returns
FALSE, the following code sets
NewRecord to Yes:

<CFSET NewRecord = "Yes">

Either way, once the first five lines
of the template have been processed,
you’ll have a new variable called
NewRecord, which indicates whether
a new record is being added. You can
then use this variable throughout the
template wherever different code is
needed for insertions or updates. Of
course, you could have named this
variable with some other name as
well; the actual variable name is not
that important, as long as it is descrip-
tive.

Note: ColdFusion variables are spe-
cial fields that you can create at any
time; they can contain any values.
Once a variable is created during the
processing of a template, it is avail-
able for use until that processing is
complete. Variables are assigned
using the CFSET tag and can be reas-
signed using that same tag.

The <CFQUERY> that retrieves the
record of the employee you want
updated is conditional. It would make
no sense to try to retrieve a record that
does not yet exist in the table. There-
fore, the entire <CFQUERY> state-
ment is enclosed in a <CFIF> state-
ment. The code <CFIF NewRecord IS
“No”> ensures that everything until
the matching </CFIF> is processed
only if this is an update.

The page title is also conditional;
that way it accurately reflects the
operation that is being performed,
and if the operation is an update, the
name of the employee being updated
is displayed. Of course, displaying the
employee name requires displaying
dynamic data; the title is therefore
enclosed within a <CFOUTPUT>
block if the operation is an update:

<CFOUTPUT QUERY="Employee">
<TITLE>Update an Employee - #LastName#,
FirstName#</TITLE>

</CFOUTPUT>

The very first field in the form itself
is a hidden field. The following code
creates a hidden field containing the
primary key of the record to be updat-
ed:

<INPUT TYPE="hidden" NAME="EmployeeID"
VALUE="#EmployeeID#">

This is required for the <CFUP-
DATE> tag to work, as explained earli-
er in this chapter.

This hidden field is only wanted if
the operation is an update. A new
employee ID is generated automatical-
ly at the time of data insertion for insert
operations, so the entire <INPUT> tag
is conditional and is only processed if
the <CFIF NewRecord IS “No”> condi-
tion returns TRUE. If NewRecord is Yes,
all the code until the matching </CFIF>
tag is ignored.

Conditional INPUT Fields
Next comes all the fields them-

selves, starting with the FirstName
field. When adding a new record, the
FirstName input field needs to look
like this:

<INPUT TYPE="text" NAME="FirstName"
SIZE="30" MAXLENGTH="30">

When updating a record, the same
field needs one additional attribute:
VALUE. The parameter passed to the
VALUE attribute is the FirstName
column as retrieved by the
<CFQUERY> tag. The complete field
for an update operation, therefore,
looks like this:

<INPUT TYPE="text" NAME="FirstName"
SIZE="30" MAXLENGTH="30"
VALUE="#Trim(FirstName)#">

Because the only difference between
the two is the VALUE attribute, you can
also make that conditional. This typical-
ly involves breaking the <INPUT> field
over multiple lines, but that is allowed.
The basic <INPUT> tag is first defined in
the following code, but no terminating
> is provided yet. Instead, you test to see
if this is an update; if yes, the VALUE
attribute is included within a <CFOUT-
PUT> block so that it can be populated
with the current value. The terminating
> appears after the condition, ensuring
that the VALUE attribute will be con-
tained within the <INPUT> tag if it is
needed.

inteliant
www.inteliant.com

<INPUT TYPE="text" NAME="FirstName"
SIZE="30" MAXLENGTH="30"
<CFIF NewRecord IS "No">
<CFOUTPUT

QUERY="Employee">VALUE="#Trim(First-
Name)#"</CFOUTPUT>
</CFIF>

>

That’s all you need to create a con-
ditional <INPUT> tag. The tag is a lit-
tle more complicated to read – and

the generated HTML source code will
likely contain multiple lines and blank
lines in the middle of the tag – but the
benefit here is that you’d only have to
make any necessary tag attributes
changes once. Similarly, if you needed
to add input fields, you’d only have to
make changes to a single template.

The final conditional code in List-
ing 11 is the submit button. Again,
check the value of the NewRecord
variable so you can specify an appro-
priate value for the submit button text.

You can now try this form. If you
specify an EmployeeID parameter
such as ?EmployeeID=7 in the URL,
you’ll be presented with an update
form. Executing the same template
without an EmployeeID parameter
displays an add form. Both forms are
shown in Figures 5 and 6.

But don’t submit the form yet. Now
you have to create a template that can
conditionally perform the actual
insert or update.

Processing Conditional Forms
Processing a conditional form

requires that the destination tem-
plate ascertain which operation
needs to be performed, and there are
many ways to do this:
• Embedding a hidden field in the

form that specifies the operation
• Checking for the existence of a spe-

cific field, or the lack thereof (simi-
lar to what you did in Listing 11)

• Checking the value of a known enti-
ty (e.g., the submit button), that
could have a different value based
on the operation being performed

For this example you do the same
thing you did in the form template
itself – check for the existence of an
EmployeeID. The hidden EmployeeID

field is only present if the operation is
an update.

The conditional insert and update
template is shown in Listing 12. Just as
in Listing 11’s form, the first thing you
do is check for the presence of the
EmployeeID field, but this time we
explicitly check for an EmployeeID
field within a FORM. The primary key
form field must be present for an
update to work. Chances are that
there would not be any other Employ-
eeID field present, but just to make
sure, you preface the field name with
the FORM identifier, as follows:

<CFIF IsDefined("FORM.EmployeeID")>

You execute a <CFUPDATE> if the
EmployeeID exists; otherwise you
execute a <CFINSERT> – it’s that sim-
ple. You now have a single template
that can both insert and update
employee records.

Unlike Listing 11, here you did not
set a variable to indicate which opera-
tion to perform. Why not? There were
many conditional elements within the
code in Listing 11, and so you don’t
have to repeatedly check for parame-
ter existence, you created a variable
you could check instead. There is only
one conditional code block here, and
so you might as well perform the
insert or update operations right
there, within the conditional block.

The other thing you did in the con-
ditional code is set a variable called
Operation, which is set to Inserted
and Updated. You then used this vari-
able twice later, in the title and in the
body. This way you did not need to
create two more conditional code
blocks. The variable contains the
appropriate text to be displayed auto-
matically, wherever it is used.

Try to update EmployeeID 7. Your
browser should look like the one
shown in Figure 7.

Note: There are an unlimited num-
ber of ways to structure your condi-
tional code, and no single approach is
right or wrong. The examples in this
chapter demonstrate several different
techniques, and you will undoubtedly
develop several of your own. The only
rule to remember is to make your
code readable, manageable, and
wherever possible, reusable.

Additional Code Reuse Techniques
While we’re on the subject of code

reuse, look at another useful way to

www.ColdFusionJournal.comCFDJ AUGUST28

SPECIAL BOOK EXCERPT

FIGURE 7: All the elements in a page can be created dynami-
cally using ColdFusion variables and fields, including the HTML
<TITLE>.

In order to submit the value of a
button you must name the field

with the <INPUT> NAME
attribute.This way the browser

can submit a name=value pair for
the submit button.

Some older browsers do not
support naming submit buttons,

and they might ignore the
attribute altogether.

C A U T I O N

FIGURE 5: Templates can be reused when using conditional
code; this Add form is also an Update form.

FIGURE 6: Templates can be reused when using conditional
code; this Update form is also an Add form.

www.ColdFusionJournal.com 29AUGUST CFDJ

eprise
www.eprise.com

www.ColdFusionJournal.comCFDJ AUGUST30

SPECIAL BOOK EXCERPT

create reusable forms.
The combination Insert and

Update form you created in Listing 11
works very well. The only problem
with it is one of manageability. With so
many <CFIF> statements you run the
risk of introducing mismatched tags
or typos, especially if you were to
modify the form at a later date.

As a rule, programmers like to keep
all conditional code in one place, cre-
ating a simpler program flow. The code
in Listing 13 shows how to do this.

This template first determines
whether this is an insert or an update
operation. If it is an update, a
<CFQUERY> is used to retrieve the
current values. The fields retrieved by
that <CFQUERY> are saved into local
variables using multiple <CFSET>
tags. There’s no <CFQUERY> used if it
is an insert operation, but <CFSET> is
used to create empty variables.

Now look at the <INPUT> fields
themselves. You’ll notice that there is
no conditional code within them as
there was before. Instead, every

<INPUT> tag has a VALUE attribute
regardless of whether this is an insert
or an update. The value in the VALUE
attribute is a ColdFusion variable, a
variable that is set at the top of the
template, not a database field.

Regardless of the operation, a set of
variables will exist once that condition-
al code has been processed. The vari-
ables are empty if the operation is an
insert, although they could also con-
tain default values. If it is an update
operation, the variables will contain
the current values. Either way, there is
a valid set of variables to work with.

If an insert form is being displayed,
the FirstName variable is empty. (The
variable would exist, it would just have
“” as its value). The following code:

<INPUT TYPE="text" NAME="FirstName"
SIZE="30" MAXLENGTH="30" VALUE="#First-
Name#">

translates into this:

<INPUT TYPE="text" NAME="FirstName"
SIZE="30" MAXLENGTH="30" VALUE="">

If an update form is being dis-
played for EmployeeID 7, the First-
Name variable would contain the text
Kim. The following code:

<INPUT TYPE="text" NAME="FirstName"
SIZE="30" MAXLENGTH="30" VALUE="#First-
Name#">

translates into this:

<INPUT TYPE="text" NAME="FirstName"
SIZE="30" MAXLENGTH="30" VALUE="Kim">

The rest of the code in the template

uses these variables, without needing
any conditional processing. Even the
page title and submit button text can
be initialized in variables this way, so
<CFIF> tags are not needed for them,
either.

Obviously this is a far more elegant
and manageable form than the one you
saw before. You may use either tech-
nique or a combination thereof – what-
ever suits you and your application.

Creating a Complete Application
Now that you’ve created add, modify,

and delete templates, put it all together
and create a finished application.

The following templates are a com-
bination of all that you have learned
in both this and the previous chapter.

The template shown in Listing 14 is
the main employee administration
page. It displays all the employees in
the Employees table and provides
links to edit and delete them (using
the data drill-down techniques dis-
cussed in the previous chapter); the
links also enable you to add a new
employee. The administration page is
shown in Figure 8.

Listing 15 is essentially the same
reusable Add and Update form you
created earlier. The only significant
change is that the <FORM> ACTION
has been changed so that template
EMPAU5.CFM processes the responses.

Listings 16 and 17 perform the
actual data insertions, updates, and
deletions. The big change in these
templates is that they themselves pro-
vide no user feedback at all. Instead,
they return to the administration
screen using the <CFLOCATION> tag
as soon as they finish processing the
database changes. <CFLOCATION> is
used to switch from the current tem-
plate being processed to any other
URL, including another ColdFusion
template. The following example code
instructs ColdFusion to switch to the
EMPADMIN.CFM template.

<CFLOCATION URL="empadmin.cfm">

This way, the updated employee list
is displayed ready for further process-
ing as soon as any change is completed.

Using CFIF to Create Conditional
Code

The conditions you have created so
far have all tested for equality or
inequality; they determine if a field or
value equals another value or does notTABLE 1: ColdFusion Conditional Operators

Operator Alternate Description
IS EQUAL, EQ Check that the right value is equal to the left value.
IS NOT NOT EQUAL, NEQ Check that the right value is not equal to the left value.
CONTAINS Check that the right value is contained within the left value.
DOES NOT Check that the right value is not contained within the left
CONTAIN value.
GREATER THAN GT Check that the left value is greater than the right value.
LESS THAN LT Check that the left value is less than the right value.
GREATER THAN GTE Check that the left value is greater than or equal to the
OR EQUAL right value.
LESS THAN LTE Check that the left value is less than or equal to the right
OR EQUAL value.

FIGURE 8: The employee administration page is used to add,
edit, and delete employee records.

www.ColdFusionJournal.com 31AUGUST CFDJ

allaire
www.allliare.com

www.ColdFusionJournal.comCFDJ AUGUST32

equal it – but you are not limited to test-
ing for equality. ColdFusion provides a
complete set of conditional operators,
and you can also combine conditions
with AND and OR operators.

The complete list of operators is
shown in Table 1. Many of the opera-
tors have alternate syntax, and you
may use whatever syntax you are
comfortable with. The syntax
GREATER THAN OR EQUAL TO is
very descriptive, but is also very
wordy and takes up additional screen
space, which might force you to have
to scroll or wrap text over multiple
lines. The abbreviated syntax GTE
accomplishes the exact same thing
and takes far less space, but is also
less intuitive.

The Boolean operators available to
you are shown in Table 2.

When combining conditions, each
condition must be contained within a
set of parentheses. The following
example checks to see if both the
FirstName and LastName fields exist:

<CFIF (IsDefined("FirstName")) AND
(IsDefined("LastName"))>

To check for either a first name or
a last name, you could use the fol-
lowing:

<CFIF (IsDefined("FirstName")) OR (IsDe-
fined("LastName"))>

Often you will want to verify that a
field is not empty and that it does not
contain blank spaces. The following
condition demonstrates how this can
be accomplished:

<CFIF Trim(LastName) IS NOT "">

You can use the CONTAINS opera-
tor (used in these two examples) to
check whether a value is within a
range of values:

<CFIF "KY,MI,MN,OH,WI" CONTAINS State>

<CFIF TaxableStates CONTAINS State>

More complex expressions can be
created by combining conditions
within parentheses. For example,
the following condition determines
whether payment is by check or cred-
it card; if payment is by credit card, it
checks to ensure that there is an
approval code:

<CFIF (PaymentType IS "Check") OR
((PaymentType IS "Credit")
AND (ApprovalCode IS NOT ""))>

As you can see, the ColdFusion
conditional support is both extensive
and powerful.

<CFIF IsDefined("EmployeeID") IS "No">
Error! No EmployeeID was specified!
<CFABORT>

</CFIF>

<CFQUERY DATASOURCE="A2Z">
DELETE FROM Employees
WHERE EmployeeID = #EmployeeID#

</CFQUERY>

<HTML>

<HEAD>
<TITLE>Employee Deleted</TITLE>
</HEAD>

<BODY>

<H1>Employee Deleted</H1>

</BODY>

</HTML>

<CFIF IsDefined("EmployeeID")>
<CFSET NewRecord = "No">

<CFELSE>
<CFSET NewRecord = "Yes">

</CFIF>

<CFIF NewRecord IS "No">
<CFQUERY DATASOURCE="A2Z" NAME="Employee">
SELECT FirstName,

MiddleInit,
LastName,
Address1,

Address2,
City,
State,
Zip,
Title,
PhoneExtension,
EMail

FROM Employees
WHERE EmployeeID = #EmployeeID#

</CFQUERY>
</CFIF>

<HTML>

<HEAD>

<CFIF NewRecord IS "Yes">
<TITLE>Add an Employee</TITLE>

<CFELSE>
<CFOUTPUT QUERY="Employee">
<TITLE>Update an Employee - #LastName#, #FirstName#</TITLE>

</CFOUTPUT>
</CFIF>

</HEAD>

<BODY>

<H1>
<CFIF NewRecord IS "Yes">
Add an Employee

<CFELSE>
<CFOUTPUT QUERY="Employee">
Update an Employee - #LastName#, #FirstName#

</CFOUTPUT>
</CFIF>
</H1>

<FORM ACTION="empau2.cfm" METHOD="POST">

Listing 11: EMPAU1.CFM – Template That Displays an Employee Add or an
Employee Update Form

Listing 10: EMPDEL1.CFM – Deleting Table Data with the SQL DELETE Statement

BEN@FORTA.COM

TABLE 2: ColdFusion Boolean Operators

Operator Description
AND Conjunction; returns TRUE only if both expressions are true.
OR Disjunction; returns TRUE if either expression is true.
NOT Negation.

www.ColdFusionJournal.com 33AUGUST CFDJ

house ad

www.ColdFusionJournal.comCFDJ AUGUST34

<CFIF NewRecord IS "No">
<CFOUTPUT QUERY="Employee">
<INPUT TYPE="hidden" NAME="EmployeeID" VALUE="#EmployeeID#">

</CFOUTPUT>
</CFIF>

<P>

First name:
<INPUT TYPE="text" NAME="FirstName" SIZE="30" MAXLENGTH="30"
<CFIF NewRecord IS "No">

<CFOUTPUT QUERY="Employee">VALUE="#Trim(FirstName)#"</CFOUTPUT>
</CFIF>

>
Middle Initial:
<INPUT TYPE="text" NAME="MiddleInit" SIZE="1" MAXLENGTH="1"
<CFIF NewRecord IS "No">
<CFOUTPUT QUERY="Employee">VALUE="#Trim(MiddleInit)#"</CFOUTPUT>

</CFIF>
>

Last name:
<INPUT TYPE="text" NAME="LastName" SIZE="30" MAXLENGTH="30"
<CFIF NewRecord IS "No">
<CFOUTPUT QUERY="Employee">VALUE="#Trim(LastName)#"</CFOUTPUT>

</CFIF>
>

Address:
<INPUT TYPE="text" NAME="Address1" SIZE="50" MAXLENGTH="50"
<CFIF NewRecord IS "No">
<CFOUTPUT QUERY="Employee">VALUE="#Trim(Address1)#"</CFOUTPUT>

</CFIF>
>

<INPUT TYPE="text" NAME="Address2" SIZE="50" MAXLENGTH="50"
<CFIF NewRecord IS "No">
<CFOUTPUT QUERY="Employee">VALUE="#Trim(Address2)#"</CFOUTPUT>

</CFIF>
>

City:
<INPUT TYPE="text" NAME="Address1" SIZE="40" MAXLENGTH="40"
<CFIF NewRecord IS "No">
<CFOUTPUT QUERY="Employee">VALUE="#Trim(City)#"</CFOUTPUT>

</CFIF>
>

State:
<INPUT TYPE="text" NAME="State" SIZE="5" MAXLENGTH="5"
<CFIF NewRecord IS "No">
<CFOUTPUT QUERY="Employee">VALUE="#Trim(State)#"</CFOUTPUT>

</CFIF>
>

Zip:
<INPUT TYPE="text" NAME="Zip" SIZE="10" MAXLENGTH="10"
<CFIF NewRecord IS "No">
<CFOUTPUT QUERY="Employee">VALUE="#Trim(Zip)#"</CFOUTPUT>

</CFIF>
>

Title:
<INPUT TYPE="text" NAME="Title" SIZE="20" MAXLENGTH="20"
<CFIF NewRecord IS "No">
<CFOUTPUT QUERY="Employee">VALUE="#Trim(Title)#"</CFOUTPUT>

</CFIF>
>

Phone Extension:
<INPUT TYPE="text" NAME="PhoneExtension" SIZE="4" MAXLENGTH="4"
<CFIF NewRecord IS "No">
<CFOUTPUT QUERY="Employee">VALUE="#Trim(PhoneExtension)#"</CFOUTPUT>

</CFIF>
>

E-Mail:

<INPUT TYPE="text" NAME="EMail" SIZE="30" MAXLENGTH="30"
<CFIF NewRecord IS "No">
<CFOUTPUT QUERY="Employee">VALUE="#Trim(EMail)#"</CFOUTPUT>

</CFIF>
>

<P>
<CFIF NewRecord IS "Yes">
<INPUT TYPE="submit" VALUE="Add Employee">

<CFELSE>
<INPUT TYPE="submit" VALUE="Update Employee">

</CFIF>
<INPUT TYPE="reset" VALUE="Clear">

</FORM>

</BODY>

</HTML>

<CFIF IsDefined("FORM.EmployeeID")>
<CFSET Operation="Updated">
<CFUPDATE DATASOURCE="A2Z" TABLENAME="Employees">

<CFELSE>
<CFSET Operation="Inserted">
<CFINSERT DATASOURCE="A2Z" TABLENAME="Employees">

</CFIF>

<CFOUTPUT>

<HTML>

<HEAD>
<TITLE>Employee #LastName#, #FirstName# #Operation#</TITLE>
</HEAD>

<BODY>
<H1>Employee #LastName#, #FirstName# #Operation#</H1>
</BODY>

<HTML>

</CFOUTPUT>

<CFIF IsDefined("EmployeeID")>
<CFSET NewRecord="No">

<CFELSE>
<CFSET NewRecord="Yes">

</CFIF>

<CFIF NewRecord>
<CFSET PageTitle = "Add an Employee">
<CFSET ButtonText = "Add Employee">
<CFSET FirstName = "">
<CFSET MiddleInit = "">
<CFSET LastName = "">
<CFSET Address1 = "">
<CFSET Address2 = "">
<CFSET City = "">
<CFSET State = "">
<CFSET Zip = "">
<CFSET Title = "">
<CFSET PhoneExtension = "">
<CFSET EMail = "">

<CFELSE>
<CFQUERY DATASOURCE="A2Z" NAME="Employee">
SELECT FirstName,

MiddleInit,
LastName,
Address1,
Address2,
City,
State,
Zip,
Title,

Listing 13: EMPAU3.CFM – Alternate Combination Insert and Update Form

Listing 12: EMPAU2.CFM – Template That Conditionally Inserts or Updates
an Employee Record

www.ColdFusionJournal.com 35AUGUST CFDJ

PhoneExtension,
EMail
FROM Employees
WHERE EmployeeID = #EmployeeID#

</CFQUERY>
<CFSET PageTitle =
"Update an Employee - " & Employee.LastName & ", " & Employee.FirstName>
<CFSET ButtonText = "Update Employee">
<CFSET FirstName = Trim(Employee.FirstName)>
<CFSET MiddleInit = Trim(Employee.MiddleInit)>
<CFSET LastName = Trim(Employee.LastName)>
<CFSET Address1 = Trim(Employee.Address1)>
<CFSET Address2 = Trim(Employee.Address2)>
<CFSET City = Trim(Employee.City)>
<CFSET State = Trim(Employee.State)>
<CFSET Zip = Trim(Employee.Zip)>
<CFSET Title = Trim(Employee.Title)>
<CFSET PhoneExtension = Trim(Employee.PhoneExtension)>
<CFSET EMail = Trim(Employee.EMail)>

</CFIF>

<CFOUTPUT>

<HTML>

<HEAD>
<TITLE>#PageTitle#</TITLE>
</HEAD>

<BODY>

<H1>#PageTitle#</H1>

<FORM ACTION="empau2.cfm" METHOD="POST">

<CFIF NewRecord IS "No">
<INPUT TYPE="hidden" NAME="EmployeeID" VALUE="#EmployeeID#">

</CFIF>

<P>

First name:
<INPUT TYPE="text" NAME="FirstName" SIZE="30" MAXLENGTH="30"
VALUE="#FirstName#">
Middle Initial:
<INPUT TYPE="text" NAME="MiddleInit" SIZE="1" MAXLENGTH="1" VALUE="#Mid-
dleInit#">

Last name:
<INPUT TYPE="text" NAME="LastName" SIZE="30" MAXLENGTH="30" VALUE="#Last-
Name#">

Address:
<INPUT TYPE="text" NAME="Address1" SIZE="50" MAXLENGTH="50"
VALUE="#Address1#">

<INPUT TYPE="text" NAME="Address2" SIZE="50" MAXLENGTH="50"
VALUE="#Address2#">

City:
<INPUT TYPE="text" NAME="Address1" SIZE="40" MAXLENGTH="40"
VALUE="#City#">

State:
<INPUT TYPE="text" NAME="State" SIZE="5" MAXLENGTH="5" VALUE="#State#">

Zip:
<INPUT TYPE="text" NAME="Zip" SIZE="10" MAXLENGTH="10" VALUE="#Zip#">

Title:
<INPUT TYPE="text" NAME="Title" SIZE="20" MAXLENGTH="20" VALUE="#Title#">

Phone Extension:
<INPUT TYPE="text" NAME="PhoneExtension" SIZE="4" MAXLENGTH="4"
VALUE="#PhoneExtension#">

E-Mail:
<INPUT TYPE="text" NAME="EMail" SIZE="30" MAXLENGTH="30" VALUE="#EMail#">

computerwork
www.computerwork.com

www.ColdFusionJournal.comCFDJ AUGUST36

<P>
<INPUT TYPE="submit" VALUE="#ButtonText#">
<INPUT TYPE="reset" VALUE="Clear">

</FORM>

</BODY>

</HTML>

</CFOUTPUT>

<CFQUERY DATASOURCE="A2Z" NAME="Employees">
SELECT FirstName, LastName, PhoneExtension, EmployeeID
FROM Employees
ORDER BY LastName, FirstName

</CFQUERY>

<HTML>

<HEAD>
<TITLE>Employee List</TITLE>
</HEAD>

<BODY>

<CENTER>

<TABLE BORDER>
<TR>
<TH COLSPAN=3>
<H1>Employees</H1>

</TH>
</TR>
<TR>
<TH>
Name

</TH>
<TH>
Extension

</TH>
</TR>

<CFOUTPUT QUERY="Employees">
<TR>
<TD>
#LastName#, #FirstName#

</TD>
<TD>
Ext: #PhoneExtension#

</TD>
<TD>
Edit
Delete

</TD>
</TR>

</CFOUTPUT>

<TR>
<TH COLSPAN=3>
Add an Employee

</TH>
</TR>

</TABLE>

</CENTER>

</BODY>

</HTML>

<CFIF IsDefined("EmployeeID")>
<CFSET NewRecord="No">

<CFELSE>
<CFSET NewRecord="Yes">

</CFIF>

<CFIF NewRecord>
<CFSET PageTitle = "Add an Employee">
<CFSET ButtonText = "Add Employee">
<CFSET FirstName = "">
<CFSET MiddleInit = "">
<CFSET LastName = "">
<CFSET Address1 = "">
<CFSET Address2 = "">
<CFSET City = "">
<CFSET State = "">
<CFSET Zip = "">
<CFSET Title = "">
<CFSET PhoneExtension = "">
<CFSET EMail = "">

<CFELSE>
<CFQUERY DATASOURCE="A2Z" NAME="Employee">
SELECT FirstName,

MiddleInit,
LastName,
Address1,
Address2,
City,
State,
Zip,
Title,
PhoneExtension,
EMail

FROM Employees
WHERE EmployeeID = #EmployeeID#

</CFQUERY>
<CFSET PageTitle =
"Update an Employee - " & Employee.LastName & ", " & Employee.FirstName>
<CFSET ButtonText = "Update Employee">
<CFSET FirstName = Trim(Employee.FirstName)>
<CFSET MiddleInit = Trim(Employee.MiddleInit)>
<CFSET LastName = Trim(Employee.LastName)>
<CFSET Address1 = Trim(Employee.Address1)>
<CFSET Address2 = Trim(Employee.Address2)>
<CFSET City = Trim(Employee.City)>
<CFSET State = Trim(Employee.State)>
<CFSET Zip = Trim(Employee.Zip)>
<CFSET Title = Trim(Employee.Title)>
<CFSET PhoneExtension = Trim(Employee.PhoneExtension)>
<CFSET EMail = Trim(Employee.EMail)>

</CFIF>

<CFOUTPUT>

<HTML>

<HEAD>
<TITLE>#PageTitle#</TITLE>
</HEAD>

<BODY>

<H1>#PageTitle#</H1>

<FORM ACTION="empau5.cfm" METHOD="POST">

<CFIF NewRecord IS "No">
<INPUT TYPE="hidden" NAME="EmployeeID" VALUE="#EmployeeID#">

</CFIF>

<P>

First name:
<INPUT TYPE="text" NAME="FirstName" SIZE="30" MAXLENGTH="30"
VALUE="#FirstName#">
Middle Initial:
<INPUT TYPE="text" NAME="MiddleInit" SIZE="1" MAXLENGTH="1" VALUE="#Mid-
dleInit#">

Last name:

Listing 15: EMPAU4.CFM – Employee Add and Update Form

Listing 14: EMPADMIN.CFM – Employee Administration Template

www.ColdFusionJournal.com 37AUGUST CFDJ

<INPUT TYPE="text" NAME="LastName" SIZE="30" MAXLENGTH="30" VALUE="#Last-
Name#">

Address:
<INPUT TYPE="text" NAME="Address1" SIZE="50" MAXLENGTH="50"
VALUE="#Address1#">

<INPUT TYPE="text" NAME="Address2" SIZE="50" MAXLENGTH="50"
VALUE="#Address2#">

City:
<INPUT TYPE="text" NAME="Address1" SIZE="40" MAXLENGTH="40"
VALUE="#City#">

State:
<INPUT TYPE="text" NAME="State" SIZE="5" MAXLENGTH="5" VALUE="#State#">

Zip:
<INPUT TYPE="text" NAME="Zip" SIZE="10" MAXLENGTH="10" VALUE="#Zip#">

Title:
<INPUT TYPE="text" NAME="Title" SIZE="20" MAXLENGTH="20" VALUE="#Title#">

Phone Extension:
<INPUT TYPE="text" NAME="PhoneExtension" SIZE="4" MAXLENGTH="4"
VALUE="#PhoneExtension#">

E-Mail:
<INPUT TYPE="text" NAME="EMail" SIZE="30" MAXLENGTH="30" VALUE="#EMail#">

<P>
<INPUT TYPE="submit" VALUE="#ButtonText#">
<INPUT TYPE="reset" VALUE="Clear">

</FORM>

</BODY>

</HTML>

</CFOUTPUT>

<CFIF IsDefined("FORM.EmployeeID")>
<CFUPDATE DATASOURCE="A2Z" TABLENAME="Employees">

<CFELSE>
<CFINSERT DATASOURCE="A2Z" TABLENAME="Employees">

</CFIF>

<CFLOCATION URL="empadmin.cfm">

<CFIF IsDefined("EmployeeID") IS "No">
Error! No EmployeeID was specified!
<CFABORT>

</CFIF>

<CFQUERY DATASOURCE="A2Z">
DELETE FROM Employees
WHERE EmployeeID = #EmployeeID#

</CFQUERY>

<CFLOCATION URL="empadmin.cfm">

Listing 17: EMDEL2.CFM – Employee delete Processing

Listing 16: EMPAU5.CFM – Employee Insert and Update Processing

CODE
LISTING

◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗

The code listing for
this article can also be located at

www.ColdFusionJournal.com

*InterNIC domain registration fee extra

www.WeAreCFHosting.com

ColdFusion Hosting

$34.95/ month
Set Up: $40 (Free with yearly plan)

M S A c c e s s , F o x P r o

M S S Q L S e r v e r 7 . 0

A c t i v e S e r v e r P a g e s

C y b e r C a s h

S h o p p i n g C a r t

R e s e l l e r P r o g r a m

Toll Free: (877) NTHOSTING
(877) 6 8 4 - 6 7 8 4

Redundant DS3 Connection

99.9% Uptime Guarantee

30-Day Money Back Guarantee

50 MB Disk Space

2500 MB Data Transfer

20 Mailboxes with Unlimited Forwarding

Domain Name Registration

ColdFusion 4.5

Access to SSL Secure Server

Daily Tape Backup

Real Time Statistics

CF SECURITY

One of the most common requests made of developers is that they create a
password-protected area on a site, be it for registered users or administra-
tive functions.

Ideally we’d like to have a system
that automatically detects if users
are logged in when they access a
page and sends them to a login
page if they’re not. We also want to
keep track of the users’ state when
they log in, so we can send them on
to their original destination after
the login process. Of course, this
system would also be easy to imple-
ment with a minimal amount of
effort on our part.

We can accomplish all these
goals by using session variables and
Allaire’s application framework. Ses-
sion variables allow us to check
which users have logged in, while
the framework gives us an easy way
to implement security across multi-
ple templates without additional
work.

Logging In – The Simple Way
Let’s start out with the basics:

Why do I want to use the application
framework file for security? For
those not familiar with the applica-
tion framework, the application.cfm
is a special file that’s run before any
other ColdFusion template in the
same directory or subdirectory. It’s
like cutting and pasting the code
from the application.cfm into the
top of each template. This model
automatically provides security to
all the ColdFusion templates in a
directory without changing them. In
addition, any new templates created
in the directory are protected with-
out any additional work.

How does this type of security
work? CF provides a convenient
method for tracking individual
users called sessions. The session
stays with the user and is used to

create variables that are accessible
only to that user. For our security
system we want to place an indica-
tor in the user’s session when he or
she logs in. We can then check the
indicator to see if the user is logged
in. A good variable to use for this is
the user’s ID; it also comes in handy
when we want to provide cus-
tomized information for the user. If
the user isn’t logged in, we can redi-
rect him or her to a login page.
When we place this check in the
application.cfm, it protects all the
pages in its directory because the
check is run before any other code
in a template. A sample applica-
tion.cfm might look like:

<CFIF NOT
IsDefined("Session.user_id")>

<CFLOCATION URL="login.cfm">
</CFIF>

The login.cfm asks for the user’s
login name and password and then
sets the user ID in the session vari-
able. The next time the user tries to
access a protected page after log-
ging in, the session variable is
defined and the code ends, allowing
the rest of your template to execute.

Logging In – One-Stop Security
Hopefully you get the general idea

and may have seen or used a similar
system in other sites. However, we
want more functionality from our
security system. The first modifica-
tion I make is to encode the login
page within the application.cfm. This
gives our model three advantages:
1. We don’t have to track which page

the user was trying to access.
2. All of the security procedures are

contained within a single file.
3. It allows us to pass on form vari-

ables.

When using this model you don’t
need to keep track of the templates
the users were going to before they
were required to log in. Why?
Because they’re still on the template
they were trying to access. The
application.cfm interrupts the nor-
mal functionality of a template and
checks to see if users are logged in.
If not, it displays a login form. The
login form submits back to the tem-
plate that they’re on, which is again
interrupted by the application.cfm
that processes the login. If the login
is okay, the normal functionality of
the template is allowed to run.

At this point you’re probably
scratching your head, so here’s a
description of what you would see
when using the model. You click on
a link to the report.cfm template
that has restricted access and aren’t
logged in. A form shows up asking
for your login and password, but
you see the report.cfm page in the
URL. The application.cfm has inter-
rupted the normal functionality of
the report.cfm page and displayed
the login form. Enter your login and
password and you see the report
you were expecting and you’re still
on the report.cfm page. The login
form submitted back to the
report.cfm page, which was inter-
rupted by the application.cfm that
processed the login and then
ended, allowing the report to run
normally. The next time you try to
access the report.cfm you won’t be
prompted to log in because your
session variable is now set.

Security Made Simple

BY
KELLY

BROWN

Use CF’s application framework to implement
security across multiple templates

www.ColdFusionJournal.comCFDJ AUGUST38

<!--- Turn On Session variables --->
<cfapplication name="AccessSecurity"
sessionmanagement="Yes"
setclientcookies="Yes"
sessiontimeout="#CreateTimeSpan(0, 2, 0, 0)#">

<!-- If not logged in, run login procedure --->
<CFIF NOT IsDefined("Session.user_id")>
<CFSET message="">
<!--- If submitting login form, process it --->
<CFIF IsDefined("Form.login")>
<!--- Check login and password --->
<cfquery name="check" datasource="users">
SELECT user_id
FROM users
WHERE email='#FORM.securitylogin#'
and password='#FORM.securitypassword#'

</cfquery>

<!--- If user found set session variable,
otherwise set error message --->

<CFIF check.RecordCount IS NOT 0>
<CFSET Session.user_id=check.user_id>

<CFELSE>
<CFSET message="Invalid Login.">

</CFIF>
</CFIF>
<!--- If logging in or invalid login

show login form --->
<CFIF NOT IsDefined("Form.login") or

message IS NOT "">
<html><head><title>User Login</title></head>
<body bgcolor="white">
<P align="CENTER">Login</P>
<CFIF message IS NOT "">
<CFOUTPUT><P align="CENTER">
#message#</P>

</CFOUTPUT><P>

Listing 1

With the login and login process-
ing all in the application.cfm, we
have a one-stop shopping security
system. We drop the file in a direc-
tory, make a few modifications and
we have security for all our tem-
plates. This system is very reusable;
I have implemented it on several
consulting engagements.

In the simple system we used a
redirect to send users to the login
page; when that happens we lose our
ability to pass form variables and
keep them as form variables. Using
the improved system, we take all the
form variables that were passed in
the protected template and place
them in hidden form fields along
with the login name and password.
When the login form is submitted,
these variables are passed along with
the form and can be accessed as the
template expects them.

Code Walk-Through
The first thing we have to do in

our application.cfm is to turn on the
session variables – the foundation of
our tracking system (see Listing 1).
Then we check to see if you’re
logged in by checking if the user ID
variable has been set in your ses-
sion. If you’re logged in, we skip the
rest of the code and run the current
page as normal. If you’re not, the
logon code is executed.

At this point two things can be
happening: either you’re entering
the page for the first time, in which

case we want to generate a login
screen, or you’ve already submitted
the login form. By checking to see if
the form.login variable exists, we
know if you’re submitting the login
form. If you’re logging in, we check
the database to verify your login
name (your e-mail address) and
password; You don’t have to use a
database to store user names and
passwords; you could simply check
for a predefined login name and
password instead. If your login was
valid we set your session.user_id
variable. If it was invalid we set an
error message. The message tells
you only that your login was invalid;
it could provide additional informa-
tion, such as informing you that
your login has expired.

The next step of the code checks
to see that you’re currently logging in
or if an error message was generated
while logging in. If neither of these is
true, you’ve just completed a suc-
cessful login and the code is skipped,
allowing the rest of the page you’re
on to execute normally. If you’re not
logging in or received an error mes-
sage when logging in, the login form
is shown. This login page can easily
be changed to match your site. We
then check to see if we have an error
message. If there’s an error, it’s dis-
played in bold red text. Next we gen-
erate the login form. For our form
action we derive the name of the
page we’re currently viewing, caus-
ing the page to submit back to itself.

As part of the form action we also
include any variables that we passed
in the URL. Next we loop through
the special Form.FieldNames list to
create hidden form fields for any
that we received. Then we display
our login and password text boxes,
which have been placed in an HTML
table to align them nicely. After the
page is displayed we use
<CFABORT> to stop the template;
this prevents the remainder of the
page from being processed.

Potential Glitches
There are a few potential prob-

lems to look out for when using this
model. The first is the possibility of
a duplicate field name. The login
form that’s generated uses a login
and password field. If you use the
same form field name on one of the
pages secured by the script, you’ll
have a conflict.

Another thing to watch out for
are double quotes (the " character)
in the form field data. The hidden
form fields that pass along the user
data use double quotes. When this
happens you’ll have problems with
the HTML and the data won’t be
passed along correctly. You can
eliminate this problem by using a
regular expression to encode the
double quotes.

K.BROWN@ABOUTWEB.COM

www.ColdFusionJournal.com 39AUGUST CFDJ

ABOUT THE
AUTHOR
Kelly Brown is the chief
technology officer. of About
Web (www.aboutweb.com),
an Internet solutions
provider in the
Washington,DC,
metropolitan area. Kelly
has a BS and MS in
computer science and
is a Microsoft certified
system engineer.

www.ColdFusionJournal.comCFDJ AUGUST40

</CFIF>
<!--- Extract the current file name from template

path and append the url parameters--->
<CFOUTPUT>
<FORM
action="#GetFileFromPath(CF_TEMPLATE_PATH)

#?#CGI.QUERY_STRING#" method="POST">
</cfoutput>
<!--- Create all passed in form variables as

hidden form fields --->
<CFIF IsDefined("Form.FieldNames")>
<CFLOOP INDEX="ThisVar" list="#Form.FieldNames#">
<CFIF ThisVar IS NOT "securitylogin" AND

ThisVar IS NOT "securitypassword">
<CFOUTPUT>
<input type=hidden

name="#ThisVar#"
value="#Evaluate("Form.#ThisVar#")#">

</cfoutput>
</cfif>

</cfloop>
</cfif>
<DIV align="center">
<TABLE border="0" cellspacing="0">
<TR>
<TD align=right>Email</TD>
<TD><input name="securitylogin" size=40></TD>

</TR>
<TR>

<TD align=right>Password</TD>
<TD><input type="password"

name="securitypassword"
size=15></TD>

</TR>
</TABLE>
<P>
<input type=submit value="Login" name="login">
</FORM>
</div>
</body>
</html>
<!--- Stop the template here when logging in,

ignoring the rest of page --->
<CFABORT>

</CFIF>
<!--- If our login was okay we fall through to the

rest of the page --->
</CFIF>

CODE
LISTING

◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗

The code listing for
this article can also be located at

www.ColdFusionJournal.com

ectron
www.ectron.com

www.ColdFusionJournal.com AUGUST CFDJ 41

allaire
www.alllaire.com

Developers have been working for some time to improve the
way ColdFusion is used to develop Web sites. CF is a powerful
presentation language for creating markup-based documents
(HTML, WML and XML) with connectivity into component-
based back-end systems such as C++, Java, COM/CORBA and
more. With these add-ins, programmers have many ways to
develop reusable object-oriented, component-based applica-
tions for the back end of a Web site. But there’s still a hole in
this architecture because we need a CFML component model
for the Web site front end as well.

BY BENJAMIN PATE

CFDJ FEATURE

www.ColdFusionJournal.com 43AUGUST CFDJ

Many Web sites have interface require-
ments so similar to each other that it
would be incredibly useful to have an
object-based approach to code reuse for
the Web site front end. I am sick and tired
of writing the same application again and
again just because one requirement was
slightly modified. Imagine being able to
encapsulate the interface for a company
directory, content management system or
departmental calendar in an easily under-
standable, extensible module. Imagine
being able to customize its functionality
for each individual Web site without hav-
ing to vandalize the original code. I pro-
pose to fill this hole with an object-orient-
ed component model for the Web site front
end called SmartObjects. This article pro-
vides an overview of the SmartObjects
model and demonstrates the value of
object-based inheritance with a simple
application that adds/updates/deletes
from a database table.

Design Objectives
I’m familiar with other attempts to

convert CF custom tags into reusable
components but I haven’t been sufficient-
ly satisfied to commit to using any of
them. Something is always missing in
terms of ease of use, flexibility and exten-
sibility. Because ColdFusion is a presenta-
tion language, it’s difficult to create a stat-
ic component that works seamlessly
among multiple applications. If I want to
reuse a component between two com-
pletely separate Web sites, I must try to
create a generic interface that won’t look
out of place on any of them.

But then what do I do when one client
asks for one set of additions to the design
and another client has requirements that
pull in an opposite direction? With exist-
ing component models I still end up hav-
ing to fork the code – make different
copies of the source code – which is ask-
ing for trouble in the long run. It’s very dif-
ficult to maintain two sets of code in par-
allel. One Web site will usually lag behind
in development, the two code bases will
drift farther apart, and they’ll eventually
become completely unrelated. This is the
primary problem addressed by SmartOb-
jects through the use of a form of inheri-
tance similar to true object-oriented lan-
guages. Instead of rewriting code or cut-
ting and pasting the parts that are need-
ed, programmers who use SmartObjects
are able to inherit the functionality they
need and override the parts they don’t.

Additionally, I don’t want to bury my
component code in the Custom Tags
directory. Depending on the environment
in which code is developed, access to the
Custom Tags directory can be anywhere

from inconvenient to downright impossi-
ble. Furthermore, components that are
installed in the Custom Tags directory still
need a stub in the Web root to call them.
This method would lead to splintered
application code scattered across the
whole machine and can be difficult to
debug. Instead, there needs to be a way to
execute the component as a stand-alone
application and there should be an easy
way to locate the component and test it
during development. This means that the
component code must be located togeth-
er in one place in the Web root like any
other application.

Finally, I want to use a model that
doesn’t require me to change my develop-
ment style. I’ve worked hard to create the
development patterns that I follow and it
doesn’t make sense to have to throw them
out just to start reusing components. The
component model should provide ser-
vices to the programmer without dictat-
ing design.

SmartObjects accomplishes all of
these requirements without adding pro-
cessing overhead to the system. Execu-
tion time is optimized with a sort of “just-
in-time” (JIT) compiling that saves the
complex work of creating object defini-
tions in a cache of application variables.
Since classes and objects have to be con-
figured only once at start-up, the only
overhead in using SmartObjects comes
from the context switch to a custom tag
and a <CFINCLUDE>. In terms of perfor-
mance, this makes SmartObjects lean and
mean.

Architecture
A complete background in object-ori-

ented programming is well beyond the
scope of this article. I must assume that
the reader has a solid grasp of basic OO
principles, but ask that you give me a little
artistic license with the concept. Smart-
Objects is neither complete nor pure
objects by any means, but it’s a decent
approximation…and it’s a great leap for-
ward in code reuse for CFML.

The SmartObjects model consists of
three custom tags that provide a simple
foundation for developing object-based

CF applications (see Table 1). They should
be installed anywhere within the Custom
Tags directory so that they’re accessible to
all CF applications. The tags can be down-
loaded from the Allaire Tag Gallery or from
my Web site at www.smart-objects.com.
Using the three custom tags, let’s examine
the anatomy of a single stand-alone class.
I’ll dive into the process of extending it in
a moment.

In object-oriented languages, logical
units of code are grouped into classes.
Using SmartObjects is similar – each class
comprises a group of CF templates in any
directory. To turn a directory into a class,
all you need to do is add a class definition
file called public.cfm. The CF templates in
the directory are then available as “meth-
ods” of the class. Listing 1 provides the
public.cfm file for the table maintenance
class. This file is processed only once,
when the application is first used. After
that the class definition is kept in a CF
structure called Application.classes. This
saves time in recalculating the locations
of methods and makes the job of figuring
out which template to include much eas-
ier. The class attribute must point to the
location of the class inside the Web root or
in a location that’s been mapped through
the ColdFusion administrator.

As with the <CFMODULE> tag, periods
in the class name represent subdirectories
in the file system. This notation preserves
the “object-ness” of SmartObjects. The
optional inherit attribute lists the name of
one or more base classes that we’ll extend –
I’ll explore this in more detail later. The
methods attribute lists the names of the files
that will be accessible through the object
interface. Each method name matches a file
name exactly, so that executing:

<CF_Call object="objectname" method="find">

includes the find.cfm file from the appro-
priate object directory. It isn’t necessary to
list all the files in the directory as class
methods. Those you don’t list won’t be
available to the <CF_Call> tag and are
similar to private functions in C++.

Once created, SmartObjects classes
can be called any way you want. They can

TABLE 1: The three custom tags you need

<CF_Class> Class Declaration. Registers a class in the application server, compiles a list of
methods that it supports and identifies any base classes that the class extends.
Names and locations of these methods are stored in Application variables for
quick access in the future.

<CF_Object> Class constructor. Creates an instance of the class in the caller’s namespace that
can be accessed in the application.

<CF_Call> Calls a class method. This custom tag uses a <CFINCLUDE> to execute the
appropriate method template.

www.ColdFusionJournal.comCFDJ AUGUST44

be hidden inside an application and
called as support functions. In order to
operate as a stand-alone application, the
example class in this article borrows sev-
eral conventions from FuseBox. Each
method expects to be called from an
index.cfm file that determines the appro-
priate method to call using a URL vari-
able. I’ve chosen to use URL.method only
because it’s simpler and more descriptive
than URL.FuseAction, but it serves exact-
ly the same purpose. Nothing about
SmartObjects requires this method of
developing applications but it can be a
powerful way of developing reusable
code.

Listing 2 provides the index.cfm file
that instantiates the object and calls the
appropriate method. This file doesn’t
need to be in the same directory as the
public.cfm file or the rest of the class
methods. When building a stand-alone
class it’s simplest to put it in the same
directory because the entire application
then resides in the same location. But
remember that the idea is to reuse this
code among many different applications,
so the code that calls this class will even-
tually be distant from the class itself.

Calling <CF_Object> is simple and
doesn’t require many parameters. The
class attribute identifies the name of the
class being instantiated. Again, this class
must include a public.cfm file and must
be available to ColdFusion as an include
file. This means that the template must
reside in the Web root or within a directo-
ry that’s been mapped with the ColdFu-
sion Administrator. The object attribute
provides the name of the structure vari-
able in the caller’s scope that contains the
object and its properties. So, when I call:

<CF_Object class="myclass"
object="session.item">

the custom tag creates a new structure
variable called session.item. Object prop-
erties variables are stored as keys/value

pairs in the structure along with a few val-
ues that are required by the system. I can
then access and update properties for this
variable the same as any other CF vari-
able. These variables can be set using the
<CF_Object> tag by including them as
attributes of the tag, or they can be set
afterwards by assigning the key/value
pairs directly to the structure using
<CFSET>. I’ll describe how the methods
access these variables in just a moment.

Once the object has been instantiated,
the bottom of the index.cfm file calls the
appropriate method using the <CF_Call>
tag and displays the output inside the inter-
face that you specify. Another interesting
convention is demonstrated here. Some-
times it’s useful for one method to include
another to chain them together without
calling a <CFLOCATION> between them.
For example, an update script might first
call the delete method to clean out old
records before continuing with its opera-
tion. To do this, I set a Request.location
variable at the end of a method that per-
forms an action such as updating the data-
base. Then the index.cfm template per-
forms the <CFLOCATION> after the meth-
ods have been executed. This gives the call-
ing application greater control over process
flow and allows for more flexibility and
modularity in programming style.

To execute a method, the <CF_Call>
tag looks in a global data structure
called Application.classes for the loca-
tion-appropriate template and uses
<CFINCLUDE> to include the file. This
means that the method executes from
within the <CF_Call> custom tag and
has its own variable namespace that’s
separate from the template that invokes
it. Thus all variables in SmartObjects
methods are encapsulated from the
caller through the same mechanism that
protects any other custom tag.

The <CF_Call> tag also provides a way
for the method to access the object prop-
erties stored in the caller’s object vari-
able. In each of the methods in Listings

3–8 you’ll notice a reference to a variable
called this. The this pointer is a structure
variable that’s created in the scope of the
<CF_Call> custom tag that points back to
the object variable in the caller’s scope.
Since ColdFusion structures are passed
by reference instead of value, it’s possi-
ble to create two structure variables in
separate namespaces that point to the
same data. When the root-level applica-
tion instantiates an object named
Request.feedback_form in its own scope,
the methods of that object can reference
that data structure by calling this in the
local scope. The this pointer is useful
because it means that methods can call
other methods in the same object with-
out having to know the specific name
that the caller used for the object vari-
able. It also provides a mechanism for
methods to store their own local data
structures.

Because there’s no such thing as infor-
mation hiding in ColdFusion, there’s no
way to create completely private methods
or data using SmartObjects. There’s no
way to prevent another part of the appli-
cation from accessing internal data. But
this architecture does provide a logical
way for components to keep their own
information out of the way of the rest of
the application. Just like objects created
with Perl, it’s up to the programmer to
obey the conventions required by the
individual object.

Example Application
Now that the foundation is laid and

you have a basic understanding of the
SmartObjects technique, we can begin to
program the object. From here, Listings
3–8 provide the class methods of the
demonstration application that perform
the actual work of the class (see Table 2).
This demonstration application provides
simple table maintenance for a generic
database table. Once you’re comfortable
with the convention of sending all links
and form posts back to the index.cfm and
controlling program flow with the
URL.method variable, it’s fairly straight-
forward ColdFusion. Nothing is too revo-
lutionary, yet….

Extending the Base Class
By defining a directory of templates as a

class, you’re able to extend its abilities with
other classes without disturbing the original
code. Now that you have a base class to
work with, you can modify it to fit a specific
application or improve on it easily and in a
modular fashion. Since the demonstration
class is a general-purpose table mainte-
nance object, the subclass can extend it by
providing a customized interface for a spe-

TABLE 2: Descriptive key to Code Listings 3–8

Listing 3 delete.cfm Action Page. Deletes one row from the table and returns the
user to the find page.

Listing 4 edit.cfm Display Page. Allows user to edit record information. Posts
variables to the Update method.

Listing 5 find.cfm Display Page. Shows a simple listing of all items in the table.
Provides a list of links that point to an edit form.

Listing 6 qry_AllRecords.cfm Query Page. Returns the entire table in a CFML query.

Listing 7 qry_ThisRecord.cfm Query Page. Dumps all of the fields for a specific record into
a query.

Listing 8 update.cfm Action Page. Uses <CFUPDATE> to update the table one record
at a time.

www.ColdFusionJournal.com AUGUST CFDJ 45

allaire
www.alllaire.com

www.ColdFusionJournal.comCFDJ AUGUST46

cific table. This is accomplished by overrid-
ing the edit method with a new template.
Everything else is included automatically
from the parent class.

For an example of a SmartObjects sub-
class definition, look at Listing 9. This new
directory (the subclass) extends our origi-
nal demonstration application (the base
class) by naming it in the inherit attribute
of the <CF_Class> tag. Normally, when the
<CF_Class> custom tag is executed, it pop-
ulates the Application.classes structure
with the list of supported methods and
their locations on the server. If the inherit
attribute is present, then <CF_Class>
begins by initializing the base if necessary
by including its class definition template
(i.e., the public.cfm template in that direc-
tory). Then the custom tag combines the
list of supported methods from the two
classes so that subclass methods always
take precedence over those of the base
class. All of the methods of the base class
will be present and will be overlaid with
the methods of the subclass. When both
parent class and subclass define a method
with the same name, the method from the
subclass will be used.

It’s also possible to inherit methods
from more than one class at a time by
passing a comma-separated list of parent
classes. In this case the first items in the
list take precedence over later ones. Once
all of the inherited methods have been
assembled, the entire structure is overlaid
with the methods of the subclass.

With the subclass definition complete,
all of the functionality of the base class is
now available to our new application and
all we have to do is define those methods
that are specific to the new application.
Listing 10 provides a new index.cfm file
that instantiates this new class. It’s iden-
tical to the original save for the object
that it instantiates. I could add anything
else that the new application requires:
more functionality, additional pages or
different data sources. All of the services
of the base class are at the disposal of the
new application. This new class is
designed to maintain a table of people.
For simplicity, I’m only extending the edit
method from the base class. The new
component that presents a slicker cus-
tomized interface is found in Listing 11.

I’ve used this technique quite effec-

tively to create a diverse hierarchy of
classes that enable me to re-create large
applications very quickly. A generic con-
tent management class is easily extended
to fit the specific needs of an individual
Web site and can draw on the services of a
file upload class, an RTF to HTML conver-
sion class and others if necessary. All of
these can be extended with a custom
written display function that draws the
content to the screen using whatever for-
mat the current Web site demands.

As another example of SmartObjects
inheritance, several applications can
draw from the same base class and extend
it in dramatically different ways. It’s easy
to create a base class that serializes itself
to WDDX and writes itself to a disk and
then deserializes itself back from the disk.
This “serializable” class can be used as a
base class to provide simple persistence
to any number of unrelated objects.

All of these pieces can be plugged in to
a complete Web application just as they
could in C++, Java or any other object-ori-
ented language. But now these pieces are
created in the powerful presentation lan-
guage of CFML.

For example, one programming tech-
nique that has become popular is to move
each query into its own separate file. By
defining queries separately as methods of
a class, another subclass written in the
future could override the query to pull its
data from a completely different source,
such as a text file, LDAP directory or a
COM object without regard to the rest of
the class. Or the price column of a prod-

uct query could be modified with specific
pricing rules before being returned to the
application. With this it is possible to
change the operation of an entire applica-
tion by updating just one template.

Though it may be possible for other
methods to emulate this kind of operation
using carefully crafted include files, the
code would become increasingly compli-
cated as the tree of parent and child class-
es grows. Each new application would
have to manage the list of locations of its
predecessors and must accommodate a
tree of templates that grows in complexity
with every new application. The magic is
in the SmartObjects custom tags because
they manage this automatically. SmartOb-
jects classes actually become simpler as
the tree expands because the only code
that needs to be added is for the templates
that are unique to each new class.

Exploration
There’s plenty more beneath the surface

of SmartObjects. It serves only as the foun-
dation on top of which many other pro-
gramming techniques and styles can be
laid. The design has limitless possibilities.

As with most demonstrations, the
example presented here is simple so the
technique is easier to identify. There are
many industrial-strength applications of
SmartObjects code in existence today. For
example, I’ve created a customer survey
application that can be customized rapidly
for any site that requires it, and a portable
authentication applet to secure Web site
access. I have also completed a set of class-
es for a content management application
that can easily be molded to fit the specific
needs of many diverse Web sites.

I’m looking forward to the new oppor-
tunities for real component-based code
reuse that SmartObjects provides. With it,
there exists a complete architecture for
object-based programming at every level
of Web site development. I’ve already
seen the benefits of simplifying code
maintenance by using this technique.
These benefits increase exponentially
with each new class. I hope you find
SmartObjects as useful as I have .

About the Author
Ben Pate has been a Web developer for five years and
holds a bachelor’s degree in computer science from UCLA.
Focusing on creating Web applications with ColdFusion, he
has served as a consultant and contractor for a wide
range of organizations from small- and medium-sized
companies to the Fortune 500. He lives in Redondo
Beach, California.

benjamin@pate.org

One programming
technique that has
become popular
is to move each

query into its own
separate file

“”

The SmartObjects model consists of three custom tags that provide a simple foundation
for developing object-based CF applications (see Table 1). They should be installed
anywhere within the Custom Tags directory so that they’re accessible to all CF applica-
tions. The tags can be downloaded from the Allaire Tag Gallery or from my Web site at
www.smart-objects.com.

www.ColdFusionJour- 47AUGUST CFDJ

SHOP ONLINE AT JDJSTORE.COM FOR BEST PRICES OR CALL YOUR ORDER IN AT 1-888-303-JAVA

WWW.JDJSTORE.COM

Guaranteed Best Prices
JDJ Store Guarantees the Best Prices.
If you see any of our products listed
anywhere at a lower price, we'll match that price
and still bring you the same quality service.

Terms of offer:
• Offer good through November 30, 2000
• Only applicable to pricing on current

versions of software
• Offer does not apply towards errors in

competitors' printed prices
• Subject to same terms and conditions

Prices subject to change.
Not responsible for typographical errors.

Attention Java Vendors:
To include your product in
JDJStore.com, please contact
amanda@sys-con.com

ALLAIRE

ColdFusion Studio v4.5

JDJStore.com . . . $46299

KL GROUP’S
JProbe Developer Suite v2.8

with Gold Support

JDJStore.com $149899

GALILEO DEVELOPMENT SYSTEMS
Intr@Vision Foundation

JDJStore.com $349999

eHELP
RoboHELP Office 2000

RoboHELP Office provides a user-friendly
WYSIWYG authoring environment for
creating JavaHelp. RoboHELP guides
you through the process so you can
create a great JavaHelp system -
with point-and-click and drag-and-
drop ease. Now you can create
JavaHelp systems as easily as you create WinHelp, Microsoft HTML
Help, and WebHelp (cross platform Help) from the same source product
- all with RoboHELP Office.

RoboHELP Office 2000 .$89899

ALLAIRE
HomeSite 4.5

HomeSite 4.5 from
Allaire HomeSite is the
award-winning HTML
editing tool that lets
you build great
Web sites in less time, while
maintaining pure HTML. Created by
Web developers for Web developers, only
HomeSite gives you precise layout control and
total design flexibility, while delivering the latest Web technologies.

HomeSite 4.5 . $9399

PROTOVIEW
JSuite v2.5

JSuite, a low priced bundle of four of the
industry's leading JavaBeans component
products. It includes: CalendarJ: Calendar
Display Component. DataTableJ: The Fastest
Grid Component On The Net! TreeViewJ:
Feature-Rich TreeView Component. WinJ
Component Library: A Series Of UI
Components.

JSuite v2.5 .$79499

ADOBE
Adobe Illustrator v9.0

Adobe Illustrator 9.0 software puts the
power of editable vector graphics to work
for the Web. Plus it expands your creative
range and enhances your productivity with
unlimited transparency capabilities, power-
ful object and layer effects, and other
innovative features. And its
tight integration with other Adobe
software ensures a smooth, efficient
workflow. Showcase your graphics in print,
on the Web, or in dynamic media with complete creative freedom.

Adobe Illustrator v9.0 CD Mac $39899

ALLAIRE
JRun Server v3.0 Enterprise

JRun 3.0 is an easy-to-use J2EE
application server and integrated
development environment for
building and deploying server-side
Java applications. From e-com-
merce to business automation,
JRun is the easiest way for develop-
ers to deliver advanced business systems
faster and at a lower cost than you‚d ever
thought possible.

JRun Server v3.0 Enterprise 2 CPU Licenses . . . $860299

CLOUDSCAPE INC.
Cloudscape Single User

Developer License
Building on its technology lead as the industry's first embeddable Java˙
database designed for distributed, off-line, and mobile computing, Cloud-
scape Release 2.0 is designed to support eBusi-
ness applications such as "smart" eCatalogs and
supply chains. Enhancements in 2.0 include:
*Multi-user concurrency that supports hundreds of users. *Advanced secu-
rity that enables only authorized applications to read data. *Substantially
faster load of initial information into the database Cloudscape 2.0 is bun-
dled with Cloudview (a schema browser utility. Includes one year of support
from the Cloudscape services organization.

Cloudscape Single User Developer License $89499

www.ColdFusionJournal.comCFDJ AUGUST48

<!--- Parent class definition --->
<CF_Class
class="object-demo1"
methods="find, edit, update, delete, qry_ThisRecord, qry_AllRecords"

>

<cfapplication name="SmartObjects demo">

<cfparam name="method" default="find">

<!--- Instantiate the object --->
<CF_Object class="object-demo1" object="obj">

<!--- Define object defaults --->
<cfset obj.table="anytable">
<cfset obj.id="id">
<cfset obj.datasource="odbc-demo">

<!--- Output the page --->
<cfheader name="Expires" value="#Now()#">
Top Navigation Goes Here
<hr>

<cfset Request.location = "">
<CF_Call object="obj" method="#method#">

<hr>
Bottom Navigation Goes Here

<!--- Follow up with another page if appropriate --->
<cfif Len(Request.location)>
<cflocation url="#Request.location#">

</cfif>

<CFQUERY datasource="#this.datasource#">
DELETE FROM #this.table#
WHERE #this.id# = #id#

</cfquery>

<cfset Request.location = "#CGI.SCRIPT_NAME#?method=find">

<!--- Call method to get this record from the database --->
<CF_Call object="this" method="qry_ThisRecord">

<cfoutput>

<!--- Redirect form post back to the same template that called this
method --->
<!--- but tell it to call the update method --->
<form action="#CGI.SCRIPT_NAME#?method=update&id=#Evaluate(this.id)#"

method="post">

<!--- Simple dynamic form loops over all columns in table --->
<table>
<CFLOOP index="i" list="#Request.qry_ThisRecord.ColumnList#">
<tr>
<td>#i#</td>
<td><input name="#i#" value="#Evaluate("Request.qry_ThisRecord."

& i)#"></td>
</tr>

</cfloop>
</table>
<p>
<input type="submit" value="Update Now">
<input type="button" value="Return to Index" onclick="window.docu-

ment.location='#CGI.SCRIPT_NAME#?method=find'">
<input type="button" value="Delete" onclick="window.document.loca-

tion='#CGI.SCRIPT_NAME#?method=delete&id=#id#'">
</form>

</cfoutput>

<!--- Get all records from the database --->
<CF_Call object="this" method="qry_AllRecords">

<!--- Print out a simple list of items in this table --->

<cfoutput query="Request.qry_AllRecords">
#Name#

</cfoutput>

<!--- Ensure that this query is not executed more than once per
request --->
<CFIF NOT IsDefined("Request.qry_AllRecords")>

<!--- Query all data from the table. --->
<!--- The #this.table# variable is defined by the template --->
<!--- that instantiates the object (index.cfm) --->
<cfquery datasource="#this.datasource#" name="Request.qry_All-

Records">
SELECT *
FROM #this.table#

</cfquery>

</cfif>

<!--- Ensure that this query is not executed more than once per
request --->
<CFIF NOT IsDefined("Request.qry_ThisRecord")>

<!--- Declare required parameter to prevent application from choking
--->
<cfparam name="#this.id#" default="0">

<!--- This dynamic query uses local object variables to determine --
->
<!--- which table and record to fetch data from --->
<cfquery datasource="#this.datasource#" name="Request.qry_This-

Record">
SELECT *
FROM #this.table#
WHERE #this.id# = #Evaluate(this.id)#

</cfquery>

</cfif>

<!--- Update the table --->
<cfupdate datasource="#this.datasource#" tablename="#this.table#">

<!--- Set the location of the next template to execute --->
<cfset Request.location = "#CGI.SCRIPT_NAME#?method=edit&id=#Evalu-
ate(this.id)#">

<!--- Subclass definition --->
<CF_Class
class="object-demo2"
inherit="object-demo1"
methods="edit">

<cfapplication name="SmartObjects demo2">

<cfparam name="method" default="find">
<cfset Application.classes = StructNew()>

<!--- Instantiate the object --->
<CF_Object class="object-demo2" object="obj2">
<!---
<cfloop item="i" collection="#Application.classes['object-demo2']#">
<cfoutput>
#i# = #Application.classes['object-demo2'][i]#

</cfoutput>
</cfloop>

<cfabort>
--->
<!--- Define object defaults --->
<cfset obj2.table="anytable">
<cfset obj2.id="id">
<cfset obj2.datasource="odbc-demo">

<!--- Output the page --->
<cfheader name="Expires" value="#Now()#">

Listing 10: Index.cfm --->

Listing 9: Public.cfm --->

Listing 8: Update.cfm --->

Listing 7: qry_ThisRecord.cfm

Listing 6: qry_AllRecords.cfm

Listing 5: Find.cfm

Listing 4: Edit.cfm --->

Listing 3: Delete.cfm

Listing 2: Index.cfm

Listing 1: Public.cfm

www.ColdFusionJournal.com 49AUGUST CFDJ

Top Navigation Goes Here
<hr>

<cfset Request.location = "">
<CF_Call object="obj2" method="#method#">

<hr>
Bottom Navigation Goes Here

<!--- Follow up with another page if appropriate --->
<cfif Len(Request.location)>
<cflocation url="#Request.location#">

</cfif>

<!--- Call method to get this record from the database --->
<CF_Call object="this" method="qry_ThisRecord">

<cfoutput>

<!--- Redirect form post back to the same template that called this
method --->
<!--- but tell it to call the update method --->
<form action="#CGI.SCRIPT_NAME#?method=update" method="post">
<input type="hidden" name="id" value="#id#">
<table>
<tr>
<td>Name</td>
<td> <input name="Name"

value="#Request.qry_ThisRecord.Name#" type="text" size="30"></td>
</tr>
<tr>
<td>Phone</td>
<td> <input name="Phone"

value="#Request.qry_ThisRecord.Phone#" type="text" size="30"></td>
</tr>
<tr>
<td>Address</td>
<td> <input name="Address"

value="#Request.qry_ThisRecord.Address#" type="text" size="30"></td>

</tr>
<tr>
<td>City</td>
<td> <input name="City"

value="#Request.qry_ThisRecord.City#" type="text" size="30"</td>
</tr>
<tr>
<td>State</td>
<td>
<table cellpadding="0" cellspacing="0">

<tr>
<td> <input name="State"

value="#Request.qry_ThisRecord.State#" type="text" size="2"
maxlength="2" size="30"></td>

<td> Zip</td>
<td> <input name="Zip"

value="#Request.qry_ThisRecord.Zip#" type="text" size="7"
maxlength="5"></td>

</tr>
</table>

</td>
</tr>

</table>
<p>
<input type="submit" value="Update Now">
<input type="button" value="Return to Index" onclick="window.docu-

ment.location='#CGI.SCRIPT_NAME#?method=find'">
<input type="button" value="Delete" onclick="window.document.loca-

tion='#CGI.SCRIPT_NAME#?method=delete&id=#id#'">

</form>
</cfoutput>

Listing 11: Edit.cfm

CODE
LISTING

◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗

The code listing for
this article can also be located at

www.ColdFusionJournal.com

virtualscape
www.virtualscape.com

www.ColdFusionJournal.comCFDJ AUGUST50

Anyone who’s needed JavaScript vali-
dation for his or her forms knows how
easy it is to use ColdFusion’s CFFORM

tag. It’s a quick and easy way to ensure that
the form is filled out properly. However,
CFFORM can be as limited as it is useful
(see Figure 1).

Several types of validation that aren’t
available are:
• Making a single-select box required
• Making checkboxes and radio buttons

required

• Limiting the number of checkboxes or
multiselect options selected

• Restricting dates entered to a certain
range.

Many developers scrap CFFORM alto-
gether and just use the HTML FORM tag
in conjunction with their own JavaScript
validation. Rarely do you hear about mul-
tiple customized validation scripts being
used with the CFFORM tag.

It’s possible to use both – good news for

anyone who already uses CFFORM and
wants to add on to it or for those who’re
tired of writing JavaScript to ensure basic
validation.

Modular Validation Scripts
The CFFORM JavaScript validation is

modular. There’s a function for each type of
validation. These functions are called by
the main function for each form field that
uses them. The validation to make sure a
text box is filled will be called five times if
you have 5 CFINPUT TYPE = “text” fields
with REQUIRED set to yes. Our customized
validation will be set up the same way.

First you need to create your SCRIPT tag.
Place your <SCRIPT> tag inside the <HEAD>
tags. ColdFusion positions the CFFORM
JavaScript just above the </HEAD> tag. If
your JavaScript isn’t inside the <HEAD>, it’ll
be below the CFFORM JavaScript. It’ll still
work, but it’s harder to debug your
JavaScript when it’s at line number 400 in
your source code. It’s much easier to have it
at the top of your source. Your customized
validation will be run after the CFFORM val-
idation completes successfully.

<HTML>
<HEAD>
<TITLE>Page Title</TITLE>
<SCRIPT LANGUAGE = "JavaScript">
function ExtendJS(FormName) {
…
}
</SCRIPT>
</HEAD>

Your JavaScript will contain several
functions. The one that processes when
the form is submitted is the one that ulti-
mately decides whether the form should
indeed be submitted or if the action
should be halted and an alert box
returned to the user. This function will
call your validation functions. You’ll have
one validation function for each type of
validation you wish to perform. We’re
using ExtendJS() as the main function.
Inside the parentheses after the function
is the variable FormName. To make the
code modular we’re also passing in the
form’s name to the function; it will be rep-
resented in the functions as the Form-
Name variable.

Calling Your Scripts
For this function to be processed when

the form is submitted, you must add an
onSubmit method to the CFFORM tag:

<CFFORM NAME = "Extend" ACTION =
"Action.cfm" onSubmit = "return
ExtendJS('Extend')">

CFDJ FEATURE

BY SELENE BAINUM

www.ColdFusionJournal.com AUGUST CFDJ 51

In your function call you need to
include the name of your FORM. This is
the value of the NAME attribute of the
CFFORM tag. In the example above the
name of the form is Extend.

Now we can start adding validation
functions and then calling them from our
main function.

Two of the most common validations
CFFORM lacks are making a single-select
box required (really required, not just
passing the first value) and making a text
area field required.

Required Select Boxes
Unless an option is set to be selected

when the page loads, the first item in a
single-select box is selected by default.
You must have a value selected in a sin-
gle-select box. When using a CFSELECT
populated by a query, the first value
from the query will be selected automat-
ically. If the user doesn’t make any
changes, that first value will be passed to
the action page. There’s no way to make
sure the user actually chooses an item.
To really make a single-select box
required you must use the HTML
SELECT tag and then have the options
generated inside a CFOUTPUT tag.
Before that CFOUTPUT tag, however,

include an empty option tag. This empty
option is what will be selected by
default:

<SELECT NAME = "SelectBox">
<OPTION VALUE = "">Select One
<CFOUTPUT QUERY = "MyQuery">

<OPTION VALUE =
"#Field#">#Field#

</CFOUTPUT>
</SELECT>

You then need a function to ensure
that a value is actually selected by the
user. The first option in a select box has an
index of 0. If that option is the one select-
ed, you know the user hasn’t really select-
ed an option. In that case the function will
return a value of false. If any other option
is selected, the function will return a value
of true. This function can be placed inside
the same SCRIPT tag as your main func-
tion (ExtendJS), but it must be under-
neath or below it, not inside it.

function
SingleSelectRequired(Form, Field) {
var itemSelected =

eval("document." + Form + "."
+ Field + ".selectedIndex");
if (itemSelected == 0) {

return false;
} else {

return true;
}

}

To use this validation for your select
boxes you’ll need to call the validation
function from the ExtendJS function:

function ExtendJS(FormName) {
if (!SingleSelectRequired(FormName,
'SelectBox')) {

alert("You must select an
item from the drop-down
list.");
return false;

}
...

}

In the script above you’re calling the
SingleSelectRequired function and pass-
ing it the name of the form and the select
box. To use the SingleSelectRequired
function for multiple select boxes, call the
function for each one and pass it the
appropriate field name. If the function
returns false, the alert message will dis-
play for the user and the form won’t sub-
mit. If the function returns true, the script
will continue running. If all validations
pass, the form will be submitted.

Required Textarea Fields
One of the most commonly used form

fields, TEXTAREA, doesn’t even have a CF
equivalent. This makes validating a
TEXTAREA very difficult. To include a
TEXTAREA in your validation, first add
the field to your form:

<TEXTAREA NAME = "Comments" COLS
= "30" ROWS = "4" WRAP =
"virtual"></TEXTAREA>

Now add a validation function:

function TextAreaRequired(Form,
Field) {

var length = eval("document." +
Form + "." + Field +
".value.length");
if (length == 0) {

return false;
} else {

return true;
}

}

This validation function is slightly dif-
ferent than the one for a text box. Instead
of just checking to see if the form field has
a value, see if the form field’s value has a
length. If the length is 0, you know noth-
ing was entered into the TEXTAREA. To
call this function, add another call to your
ExtendJS function:

if (!TextAreaRequired(FormName,
'Comments')) {

alert("You must enter some
comments.");

return false;
}

Additional Tips
The two examples above show how to

validate HTML FORM fields inside a
CFFORM. You can also write your own
functions to perform additional valida-
tion on your CFFORM tags. Listing 1 pro-
vides examples of performing custom
validation on CFINPUT fields of type
text, radio and checkbox. These valida-
tion scripts can be used for both CFML
and HTML form fields. In your JavaScript
simply pass the name of the form field as
you would for HTML fields.

About the Author
Selene Bainum is a senior software engineer for iXL.
She has over four years of ColdFusion experience
and has been a member of Team Allaire since
December 1997.

FIGURE 1: A complex form selene@webtricks.com

www.ColdFusionJournal.comCFDJ AUGUST52

<HTML>
<HEAD>
<TITLE>Extending CFFORM</TITLE>
<SCRIPT LANGUAGE = "JavaScript">
// Main validation function.
// Variables needed: form name
// All validation functions will be called from
// this function
// The actual validation functions will be outside
// of this function, either above or below it
// If any of the variables used in these functions
// are ColdFusion variables, the functions must be
// within CFOUTPUT tags
function ExtendJS(FormName) {

// Call the function to validate a date as being
// before today's date.
// Variables to pass: form name, field name,
// type
// The type parameter will have a value of
// either 'date' or 'eurodate'
if (!DateLessThan(FormName,'DOB','date')) {

alert("Your DOB cannot be after today.");
return false;

}
// Call the RadioCheckBox function to
// ensure one of a radio button series is
// checked
// Variables to pass: form name, field name,
// number of items total, min required, max
// required
// * For radio fields, min and max will be 1
// * The number of items total will most likely
// be the RecordCount of the query used to
// generate the options.
if (!RadioCheckBox(FormName,'Sex',2,1,1))
{

alert("You must select your sex.");
return false;

}
// Call the RadioCheckBox function to
// ensure one (or more) of a checkbox series is
// checked
// Variables to pass: form name, field name,
// number of items total, min required, max
// required
// * The number of items total will most likely
// be the RecordCount of the query used to
// generate the options.
if
(!RadioCheckBox(FormName,'Hobbies',4,2,3))

{
alert("You must select 2 or 3 hobbies.");
return false;

}
// Call the SingleSelectRequired function to
// ensure an item in a select box is chosen
// Variables to pass: form name, field name
if (!SingleSelectRequired(FormName,'Version')) {

alert("You must a version of CF.");
return false;

}
// Call the MultiSelectCheck function to ensure
// one (or more) items in multi-select box are
// chosen
// Variables to pass: form name, field name
if (!MultiSelectCheck(FormName,'FavTags',2,6)) {

alert("You must at least 2 tags.");
return false;

}
// Call the TextAreaRequired function to ensure
// a textbox field is filled out
// Variables to pass: form name, field name
if (!TextAreaRequired(FormName, 'Comments')) {

alert("You must enter some comments.");
return false;
}

}

// Validation functions

// Function to ensure a text area field is filled
// out.
// Variables needed: form name, field name
function TextAreaRequired(Form,Field) {

// determine the length of the value of the

// field.
// The eval function will evaluate the statement
// inside the parenthesis.
var length = eval("document." + Form + "." + Field

+ ".value.length");
// If the length of the value of the field is 0,
// return false.
if (length == 0) {

return false;
} else {

return true;
}

}

// Function to validate the number of items
// selected in a multi-select box
// Variables needed: form name, field name,
// minimum items selected,
// maximum items selected
function MultiSelectCheck(Form,Field,minReq,maxReq)
{

// Set the selected var to a default of 0.
var selected = 0;
// Determine how many options are in the
// multi-select box
var length = eval("document." + Form + "." + Field

+ ".length");
// Loop through the items in the multi-select
//box
for (i=0; i<length; i++) {

// If an item is selected, increment the
// selected var by one
if (eval("document." + Form + "." + Field + "["

+ i + "].selected")) {
selected++;

}
}
// Determine if the number of items selected is
// between the max and min values.
// Return false if not, true if so
if (selected < minReq || selected > maxReq) {

return false;
} else {

return true;
}

}

// Function to ensure that a value in a select box
// is selected
// Variables needed: form name, field name
function SingleSelectRequired(Form,Field) {

// Determine the index of the item currently
// selected
var itemSelected = eval("document." + Form + "." +

Field + ".selectedIndex");
// If that index is 0, return false
if (itemSelected == 0) {

return false;
} else {

return true;
}

}

// Function to validate radio and check boxes
// For radio, ensures that one radio button in a
// series is selected
// For checkbox, ensures that the number selected
// is in the min and under the max
// Variables needed: form name, field name, number
// of items total, minimum items checked, maximum
// items checked
// For radio buttons, the min and max will always
// be 1
function

RadioCheckBox(Form,Field,length,minReq,maxReq)
{

// Set the checked var to a default value of 0
var checked = 0;
// Loop through the number of items
for (i=0; i<length; i++) {

// If an item is checked, increment the
// checked var
if (eval("document." + Form + "." + Field + "["

+ i + "].checked")) {
checked++;

}
}

Listing 1: ExtendCFFORM. cfn

www.ColdFusionJournal.comCFDJ AUGUST54

// If the checked var is between the min and
// max, return true, otherwise, false
if (checked < minReq || checked > maxReq) {

return false;
} else {

return true;
}

}

// Function to validate a date so that the date
// entered must be less than today
// Variables needed: form name, field name
// Don't you wish JavaScript had a DateCompare
// function?
function DateLessThan(Form,Field,type) {

// Create a var called today with a value of
// today's date
var today = new Date();
// Get the time in milliseconds from the current
// date
var todayMS = today.getTime();
// Get the date value of the form field (this
// has already been validated as a valid date by
// CF's form validation'
var dateValue = eval("document." + Form + "." +

Field + ".value");
// Split the date to create an array
var dateSplit = dateValue.split("/");
// If the type is 'date', set the month to the
// first value in the array
// Subtract 1 from the date because JavaScript
// uses 0-11 to represent months
// Set the day of the month to the second value
// in the array
if (type == 'date') {

var month = dateSplit[0] - 1;
var day = dateSplit[1];

}
// If the type is 'eurodate', set the month to
// the second value in the array
// Subtract 1 from the date because JavaScript
// uses 0-11 to represent months
// Set the day of the month to the first value
// in the array
if (type == 'eurodate') {

var month = dateSplit[1] - 1;
var day = dateSplit[0];

}
// Set the year to the third value in the array
var year = dateSplit[2];
// Create a new date object variable to hold the
// date, passing in the month, day and year
var dateEntered = new Date(year,month,day,0,0,0);
// Get the milliseconds from this date
var dateEnteredMS = dateEntered.getTime();
// Compare the milliseconds from the current
// date with those of the date entered.
// Return false if the date entered is greater
// than today's date
if (dateEnteredMS > todayMS) {

return false;
} else {

return true;
}

}

</SCRIPT>
</HEAD>

<BODY BGCOLOR = "#ffffff">

Fill out the form below:<P>

<I>(all fields required)</I><P>

<!---
Create the form with the CFFORM tag.
Add an onSubmit attribute and in it call
the ExtendJS() function. Pass the name of the
form, in this case Extend, to the function

--->
<CFFORM NAME = "Extend" ACTION = "Action.cfm"
onSubmit = "return ExtendJS('Extend')">

<TABLE BORDER = "0">
<TR>

<TD>Name:</TD>

<TD><CFINPUT TYPE = "text" NAME = "Name"
REQUIRED = "yes"
MESSAGE = "You must enter your name."></TD>

</TR>

<TR>
<TD>Age:</TD>
<TD><CFINPUT TYPE="Text" NAME="Age"
RANGE="21,150" VALIDATE="integer"
REQUIRED="Yes"
MESSAGE = "You must be 21."></TD>

</TR>

<TR>
<TD>DOB:</TD>
<TD><CFINPUT TYPE="Text" NAME="DOB"
VALIDATE="date" REQUIRED="Yes"
MESSAGE = "You must enter a valid date.">
</TD>

</TR>

<TR>
<TD>Sex:</TD>
<TD><NOBR><CFINPUT TYPE="Radio" NAME="Sex"
VALUE="Male">Male <CFINPUT TYPE="Radio"
NAME="Sex" VALUE="Female">Female</NOBR></TD>

</TR>

<TR>
<TD VALIGN = "top">Hobbies:
<I>Check
2 or 3</I></TD>
<TD VALIGN = "top">
<CFINPUT TYPE="checkbox" NAME="Hobbies"
VALUE="TV">Watching TV

<CFINPUT TYPE="checkbox" NAME="Hobbies"
VALUE="Reading">Reading

<CFINPUT TYPE="checkbox" NAME="Hobbies"
VALUE="WorkingOut">Working Out

<CFINPUT TYPE="checkbox" NAME="Hobbies"
VALUE="Programming">Programming

</TD>

</TR>

<TR>
<TD>First CF Version:</TD>
<TD><SELECT NAME = "Version">
<OPTION VALUE = "">Select One
<OPTION VALUE = "1.x">1.x
<OPTION VALUE = "2.x">2.x
<OPTION VALUE = "3.x">3.x
<OPTION VALUE = "4.x">4.x
</SELECT></TD>

</TR>

<TR>
<TD VALIGN = "top">Favorite
Tags:
<I>Select at least 2</I></TD>
<TD VALIGN = "top"><SELECT NAME = "FavTags"
SIZE = "6" MULTIPLE>
<OPTION VALUE = "CFOUTPUT">CFOUTPUT
<OPTION VALUE = "CFQUERY">CFQUERY
<OPTION VALUE = "CFIF">CFIF
<OPTION VALUE = "CFFORM">CFFORM
<OPTION VALUE = "CFLOOP">CFLOOP
<OPTION VALUE = "CFSET">CFSET
</SELECT></TD>

</TR>

<TR>
<TD COLSPAN = "2">Comments:</TD>

</TR>

<TR>
<TD COLSPAN = "2"><TEXTAREA NAME = "Comments"
COLS = "30" ROWS = "4" WRAP =
"virtual"></TEXTAREA></TD>

</TR>
</TABLE><P>

<INPUT TYPE = "submit" VALUE = "Submit">
</CFFORM>

</BODY>
</HTML>

CODE
LISTING

◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗

The code listing for
this article can also be located at

www.ColdFusionJournal.com

www.ColdFusionJournal.com 55AUGUST CFDJ

allaire
www.allaire.com

Developing Wireless Apps with
ColdFusion Part 1

Setting the stage for growing
acceptance

www.ColdFusionJournal.comCFDJ AUGUST56

There’s a growing buzz around the world of wireless Web applications, that is, Web sites accessible
to phones and other wireless devices. You may have read that in ColdFusion 4.5 Allaire added
support for something called WAP (Wireless Access Protocol).

It’s the core of a powerful (and sur-
prisingly easy) approach to creating
applications for phones, pagers, two-
way radios and more.

Perhaps you’re wondering how
all that works and whether you
should jump on the bandwagon.
How do you get started? How do
you make it work in ColdFusion?
What version of CF do you need?
Are all wireless phones alike? What
are the programming challenges of
things such as browser detection,
error handling, security and session
management?

In this series of articles I hope to
lay a foundation of principles and
understanding to determine if and
how you should go about develop-
ing wireless applications in ColdFu-
sion. It’s easy to do, but there are
quite a few sources of confusion, so
don’t be surprised if your first
attempts to look into it leave you
wondering.

Much of the information in these
articles is excerpted from my chapter
on developing dynamic WAP applica-
tions using CF from the upcoming
book, Professional WAP Program-
ming (Wrox Press), which will already
be out by the time you read this.

In this article, however, I’ll lay
some groundwork that I didn’t get
to address in that chapter (since
mine was a later chapter in the
book, and other writers addressed
general WAP issues prior to it). I’ll
also share some of my own take on
the state of affairs revolving around
WAP application development.

First I want to address the ques-
tion of if and how you should get
started with WAP programming. I’ll
also introduce the challenges of
converting an existing site to be

supported on wireless devices.
More important, I’ll show you

how to create and begin testing
WAP applications even if you don’t
have a wireless phone so you can at
least get started.

I’ll also identify some resources
for learning more on your own.

In the remaining articles in this
series, I’ll address the specifics of
doing WAP development in ColdFu-
sion and those challenging pro-
gramming issues I mentioned above.

Building on Previous Articles
This article builds on two previ-

ous ones that appeared in ColdFu-
sion Developer’s Journal.

In the December issue (Vol. 1,
issue 6) the illustrious Ben Forta
wrote “No Strings Attached,” a great
introductory article on WAP and
WAP programming. He laid out
some of the foundation principles
of WAP and showed some basic
WML (Wireless Markup Language)
code. You can find it online at
www1.sys-con.com/coldfusion
/archives/0106/forta/index.html.

In the April issue (Vol. 2, issue 4)
Paul Elisii wrote an excellent article
entitled “ColdFusion in the Palm of
Your Hand” (www.sys-con.com/
coldfusion/archives/0204/elisii/ind
ex.html). His focus was developing
wireless applications for the Palm

BY
CHARLES
AREHART

JOURNEYMANCOLDFUSION

www.ColdFusionJournal.com 57AUGUST CFDJ

computing platform (PalmPilots
and related devices). As he indicat-
ed, the “Web clipping” approach he
described is limited to those
devices, and he mentioned WAP as
a competing standard typically
found in wireless phones.

I recommend that you read both
as a precursor to this article to get a
taste of the WML language and to
tide you over until next month
when I’ll begin showing some sub-
stantial examples and solutions.

Wireless Application Protocol
WAP-enabled phones are increas-

ingly common; many if not most
newly manufactured mobile phones
now support the protocol.

The “wireless Web,” as many
phone companies call it, will open a
whole new world for accessing
information on the Web in a timely
and succinct manner (and, again,
on more than just phones).

The best news of all (for readers
of this magazine) is that you can use
ColdFusion to create and drive such
wireless Web sites, so it also opens
up huge opportunities for those
willing to invest a little time in
learning about WAP and the WML
language.

Created as an open protocol
managed by the independent WAP
Forum (www.wapforum.org), WAP
is similar to – and in fact works in
conjunction with – HTTP. The WML
language is similar to HTML, but
different enough so you really need
to learn more than just the differ-
ences in syntax.

Developing for wireless devices
really requires a new conception of
what (and how much) to present to
users and how to enable them to
traverse the “site” you’re offering. Of
course, the limited display interface
is the most obvious challenge, but
data entry is also extremely chal-
lenging on those simple keypads
(see Figure 1).

Don’t let the minimal screen and
features of the phone scare you
away. With clever design, many
powerful applications can leverage
the ubiquity and flexibility – and
indeed the minimalist interfaces –
of these phones.

WML is easy to learn and should
help wireless application develop-
ment take off, much like Web page
development did with the ease of

learning and developing in HTML.

Slow Uptake of WAP Phones
Still, there will inevitably be those

who will point to articles and press
releases foretelling the doom of
WML, and to the slow uptake of WAP
phones, especially in the U.S. They’re
actually quite popular in Europe,
Australia and Asia (in Japan there’s
also another wireless protocol grow-
ing in popularity, called iMode).

WAP phones and wireless Web
services aren’t yet taking the world
by storm for a few reasons. I think
it’s just a matter of time, but these
problems are indeed a stumbling
block to broader reception in the
near term. Should you wait? I don’t
think so. As I’ll explain here, much of
the consternation comes from sim-
ple confusion about the new tech-
nology. However, it won’t take long
for these problems to be overcome.

First, most phone service
providers charge extra to access the
wireless Web, but, fortunately, many
are now letting it simply count
against your talk-time minutes.

A considerable source of confu-
sion (for users and information
providers debating whether to “go
wireless”) is the limited number of
sites listed on the front of the
phones by default (as shown in Fig-
ure 1). If you’re not listed there, how
are people going to know about
your site, let alone visit?

This is similar to the default por-
tals that show up for users who
install new copies of IE or Netscape.
Novice users think “the Web” is only
what’s listed on Microsoft’s MSN or
Netscape’s NetCenter sites. But we
know those sites are simply ones
that have established relationships
with Microsoft or Netscape,
enabling them to be listed there.

While most users know (or soon
learn) they can type in any Web
address (URL) on their browsers,
many wireless phone users face a
greater challenge when doing so.
First, they need to know they can
type in any address (it’s usually
buried in a menu system). Then
they need to type it in laboriously
using the phone’s limited keyboard
(shortened domain name aliases
are becoming popular for many
well-known sites).

More important, users need to
know that the sites they’re interest-

ed in (from broadly popular ones to
those focused on some specific
interest, or even an intranet) are
available for wireless browsing.
Many of the more popular sites are
now creating wireless versions of
their sites (often using the same
URL but detecting and redirecting
wireless visitors to a separate,
WML-enabled section, as we’ll dis-
cuss later). Like the introduction of
a new “traditional” Web site, pro-
motion and marketing of a “wire-
less” site is critical.

Finally, many users (and, again,
potential information providers)
are under the false impression that
the wireless Web is merely about
presenting mini versions of existing
Web sites. While it’s conceptually
true, the wireless Web is actually
about creating an entirely new class
of applications suited to the smaller
screen and, more important, lever-
aging the “always on, always at
hand” nature of the phone.

Creating wireless apps is about
rethinking what your users need,
and either building modified ver-
sions of your existing applications
to serve their unique needs or see-
ing the opportunity to create an
entirely new application for wire-
less visitors.

In many ways this is like the
early days of the Web – a lot of con-
fusion, some hemming and hawing,
and plenty of opportunity for early
movers. Early adopters often get a
bit bloodied, but in this case the sig-
nificant similarity to HTML makes
an investment of time and energy in
WML seem very worthwhile, yet rel-
atively inexpensive. It’s really easy
to get started. So let’s do it.

FIGURE 1: WAP phone

ABOUT THE
AUTHOR

Charles Arehart is
a certified Allaire

trainer and CTO of
SysteManage, an Allaire
partner. He contributes

to several CF resources
and is a frequent

speaker at user groups
throughout the country.

JOURNEYMANCOLDFUSION

www.ColdFusionJournal.comCFDJ AUGUST58

Visiting (or Creating) a WML Site
Wireless Web sites (developed

with WML) can’t be viewed (yet) in
normal HTML browsers. To do wire-
less development – or simply to visit
some sites to get an idea of how
things work – you don’t need to
have access to a wireless phone. If
you do have access, great (though
not all phones are created equal –
more on that in a moment).

If you don’t have a wireless
phone, don’t despair. Just head over
to www.phone.com (the makers of
the UP.browser, which is at the heart
of many WAP-enabled phones).
They have a simulator you can
install on your workstation that pre-
sents a life-like replica of a phone
(see Figure 1, taken from the simula-
tor) that allows you to enter the URL
of any site, whether on your local
workstation or on any site on the
network (Internet or intranet).

To get the free simulator (what
they call the UP.SDK or software
developer kit) you’ll need to register
(again free) on their developer site.
It’s painless (and doesn’t seem to lead
to a lot of junk mail, etc.) and a link is
clearly offered on their Web site.

The term SDK is a bit of a mis-
nomer. It conjures up the notion of
APIs you need to learn, installable
libraries you need to compile and
“distributions” you need to keep up
with. In this case it’s a simple, single-
installation program that loads the
simulator and a couple of related
programs onto your workstation.

The SDK also installs some excel-
lent documentation, including getting
started, tutorial and reference guides
for both WML and the phone (as well
as WMLScript, discussed later).

The phone.com developer site
has additional resources for learn-
ing more, including a technical
library, a training program and even
alternative “skins” to make the sim-
ulator look like your favorite phone.

Once you install and start the
simulator, it’ll load the page shown
in Figure 1 (if you’re connected to
the Internet). From there you can
browse the sites offered (which
include some interesting how-to’s,
examples and links to real WAP-
enabled sites).

You can also visit sites of your
own choosing. On a real phone
you’d have to find the menu com-

mand that allows you to enter the
URL using the keypad (did I say
how annoying that is?). Fortunately,
in the simulator you can simply
type in a URL with your keyboard
using the top GO line of the simula-
tor window (not shown in Figure 1,
but obvious in the simulator).
Again, you can enter any valid URL
to open a WAP-enabled Web site,
whether local or on the Internet. (I
should add that users of real phones
can usually bookmark a site address
that they’ve “typed” in, saving them
from frustration in future visits.)

Other WAP Phones and Simulators
While the phone.com simulator

and the UP.Phone browser included
in many (if not most) wireless
phones are very popular, they’re not
the only game in town. Sadly, like
the challenges of different browsers
in the early days of the Web (which
still haunt us today), multiple WAP-
enabled browsers are used to power
phones and alternative simulators
for those WAP browsers.

Nokia, a prominent wireless
phone manufacturer, has their own
embedded phone browser and sim-
ulator. While also based on WAP, it
may process a page differently than
a phone.com driven phone or simu-
lator. Part of the problem is that the
phone.com browser (in the phones
and the simulator) allows for exten-
sions to the WML language, just as
Netscape extended HTML early on.

The formal specification (or DTD,
Document Type Definition) for WML
is laid out by the WAP Forum. If you
rely solely on the phone.com simu-
lator or a phone.com-driven phone
for your testing and development,
you run the risk of creating code that
won’t run in all phones. This is a real-
ity. Many phones do embed the
phone.com browser. However, it’s up
to you to decide what level of effort
you want to expend on avoiding
browser-specific WML and testing
on multiple phones and simulators.

For early testing (rather than full-
blown production rollout), it may be
safe to let this issue slide while the
industry sorts out these challenges.
(Phone.com offers a 16-page white
paper addressing this very issue of
compatibility and standards integra-
tion. See www.phone.com/pub/
IOTWP_0400.pdf.)

Next Issue, and Learning More in
the Meantime

We’re out of time and space. In
the next issue I’ll show you how to
create WML applications in Cold-
Fusion. It’s really very easy. Remem-
ber that Ben Forta’s December arti-
cle shows the basics: the CFCON-
TENT tag and the special value
needed for its “type” attribute, some
simple WML code, issues such as
case sensitivity of WML and more.

To learn more about WML and
WAP, see the phone.com (or Nokia)
documentation. Links to both are
offered at a new developer area “ref-
erence desk” on the subject of WAP,
available on the Allaire site at
www.allaire.com/developer/Tech-
nologyReference/wap.cfm.

Ben Forta recently took part in
an interesting Q&A session on WAP
and CF directions, available at
www.allaire.com/handlers/index.cf
m?id=15970&method=full.

In future articles I’ll provide
more substantial examples of WML
development in ColdFusion. I’ll
also share information on some
important items that will inevitably
arise as you begin developing WML
applications. I’ll continue the dis-
cussion by identifying several tricks
and traps to be aware of as you pur-
sue this technology.

It’s ever evolving, as is Allaire’s
support for it. It’s an exciting time,
and I hope you enjoy the ride!

CAREHART@SYSTEMANAGE.COM

CFDJ readers who wish to
explore issues regarding

developing applications in
the unwired world in more

detail can go to www.
sys-con.com/wireless where
full details may be found of

SYS-CON Media’s newest
magazine.The premier issue
will include a feature article

by Charles Arehart on “WML
for HTML Developers.”

EDITOR’S NOTE

Career Opportunities

Southfield, MI

Cold Fusion Web Developer
Be a part of the entire Information Systems process at THE
HOME DEPOT, the world's largest home improvement retailer.

The Special Order Center (S.O.C.) division is seeking a permanent full-
time Cold Fusion Web Developer to maintain its existing home decor
site while developing additional concepts for an expanded product
line.

Applicants should have in depth knowledge of HTML, Cold Fusion,
JavaScript, SQL, SQL Server and browsers. A working knowledge of
Java, Perl, CGI, C++ and CORBA are a plus. Other requirements
include a desire to learn, take on new responsibilities and grow along
with the company. We are seeking highly motivated team players,
with a can-do attitude, to work in a start-up like environment.

THE HOME DEPOT provides a balance between work and personal
interests as seen through our family friendly benefits programs
that include flexible hours, health insurance, 401(k), stock options,
education reimbursement and a casual dress code. For immediate con-
sideration, please contact:

Briana Motley
Home Depot Special Order Center
200 Galleria Officentre 4th Floor
Southfield, MI 48034
Phone: 248-351-8700
Fax: 248-204-3734
briana_motley@homedepot.com

www.homedepot.com

Cambridge, MA

Cold Fusion Developers
uclick is a pre-IPO company that is revolutionizing the Internet content mar-
ket space. Soon we will be launching a number of major initiatives that will
position us as a dominant industry player. We are on track to more than
triple in size this year. We are looking for dynamic people with initiative
who will help us maintain our excellent track record. uclick offers a (pre-
IPO) stock option plan, competitive salary, 401K, vacation, casual attire,
flexible hours, and growth opportunities in an exciting and fun environment.
The Cambridge office is located next to the Alewife Train Station.

We are currently looking for Cold Fusion Developers and Sr. Cold Fusion
Developers. Candidates should have 1+ years of Cold Fusion experience
including knowledge of some advanced Cold Fusion features. Sr. Cold
Fusion Developers should also have experience with scripted and non-script-
ed languages, knowledge of Internet protocols, and Oracle experience a
plus. We are also looking for a Senior Architect and an Oracle DBA.

Please send resume and salary requirements to:
VP Engineering

uclick, LLC
125 Cambridgepark Drive, Cambridge, MA 02140

Email: lfillion@uclick.com
Phone: 617-868-0009 x203, Fax: 617-868-4344

CFDJ AUGUST60

ADVERTISER URL PH PG
ADVERTISERS INDEX

ABLECOMMERCE WWW.AUCTIONBUILDER.COM 360.253.4142 2.

ABLECOMMERCE WWW.ABLECOMMERCE.COM 360.253.4142 4

ALLAIRE WWW.VUE.COM/ALLAIRE 877.460.8679 41

ALLAIRE WWW.ALLAIRE.COM 888.939.2545 45,54

ALLAIRE DEVELOPER CONFERENCE WWW.ALLAIRE.COM/CONFERENCE 31

CAREER OPPORTUNITIES 800.582.3089 59

COMPUTERWORK.COM WWW.COMPUTERWORK.COM 35

CONCEPTWARE AG WWW.CONCEPTWARE.COM 49.061.964.7320 21

CORDA TECHNOLOGIES WWW.POPCHART.COM 888.763.0517 17

CYBERSMARTS WWW.CYBERSMARTS.NET 62

DEVELOPERSNETWORK WWW.DEVELOPERSNETWORK.COM 416.203.3690 15

DIGITALNATION WWW.DEDICATEDSERVER.COM 877.624.7897 13

EKTRON WWW.EKTRON.COM 603.594.0249 40

EPRISE WWW.EPRISE.COM 508.661.5200 29

EVOLUTION B WWW.EVOLUTIONB.COM/SYNERGYFORFREE 604.662.7551 63

FIG LEAF SOFTWARE WWWFIGLEAF.COM 202-797.5478 3

INTELIANT WWW.INTELIANT.COM 800.815.5541 27

INTERLAND WWW.INTERLAND.COM 800.419.1714 9

INTERMEDIA WWW.INTERMEDIA.NET 650.424.9935 64

JDJ STORE WWW.JDJSTORE.COM 888.303.JAVA 47

MACROMEDIA WWW.MACROMEDIA.COM 415.252.2000 10,11

SAISOFT WWW.SAISOFTONLINE.COM 860.793.6681 62

SITEHOSTING.NET WWW.SITEHOSTING.NET 877.NTHOSTING 37

SYS-CON MEDIA INC. WWW.SYS-CON.COM 800.513.7111 59

VIRTUALSCAPE WWW.VIRTUALSCAPE.COM 212.460.8406 49

WIRELESS DEVCON WWW.WIRELESSDEVCON2000.COM 212.251.0006 53

XML DEVCON 2000-2001 WWW.XMLDEVCON2000.COM 212.251.0006 61

Able Solutions
Enter the realm of browsable store building and administration – from

your browser. Build “your_site.com” with secure Merchant Credit Card Pro-
cessing. Maintain inventory, add discounts and specials to keep your cus-
tomers coming back. Increase sales with cross selling and membership pricing.
11700 NE 95th Street, Suite 100, Vancouver, WA
www.ablecommerce.com • 360 253-4142

Catouzer
Catouzer develops web-based intranet and Customer Relationship Man-

agement software solutions. With Synergy 2.0, Catouzer continues its lead in
providing secure web-based work environments. ColdFusion developers now
have the most advanced framework to develop secure web-based projects.
www.catouzer.com • 604 662-7551

ComputerWork.com
ComputerWork.com is a premiere technical job site for computer pro-

fessionals seeking employment in the IT/IS industry. ComputerWork.com
will match your technical skills and career ambitions to our many employers
looking to fill their jobs with specialists in computer related fields. You can
submit your resume to a specific position on our job board or you can
choose to submit your resume to our resume bank, which is accessed by
nearly 400 companies nationwide. ComputerWork.com is the FASTEST way
to your ideal career!
6620 Southpoint Drive South, Suite 600Jacksonville, FL 32216
www.computerwork.com • 904-296-1993

Corda Technologies
Corda Technologies offers tools to build your own charts and graphs for

internal reports, reports on your intranet and Internet sites and for many other
applications where fast, high-quality graphs and charts are desirable. Corda
also offers an Application Service Provider through PopChart.com which works
with high-volume sports web sites to display sports statistics with exciting,
interactive charts and graphs. PopChart”! . . .an EXPLOSION of Possibilities!
1425 S. 550 East Orem, UT 84097
www.corda.com • 801-802-0800

DevelopersNetwork.com
Developers Network is the essential online business-to-business

resource for new media technology and Internet business solutions. Our
Resource, Business and Product channels combine elements of helpware
and community in a business setting, successfully reaching those buyers
developing and managing Internet strategies.
3007 Kingston Road Toronto, Ontario CANADA M1M 1P1
www.developersnetwork.com • 416-203-3610

digitalNATION - a VERIO company
digitalNATION, VERIO's Advanced Hosting Division, is the world's lead-

ing provider of dedicated server hosting, with over 1,650 servers online
today. dN's superior connected network and service abilities have earned
dN a solid reputation as a first-choice provider of dedicated server solutions
(Sun, Windows NT, Linux and Cobalt). digitalNATION has been providing
online and network services for over six years. One of the first ISPs to pro-

vide dedicated servers running Microsoft Windows NT, the dN staff
has unparalleled experience in this industry.
5515 Cherokee Ave, Alexandria, VA 22312-2309
www.dedicatedserver.com • 703 642-2800

Ektron
Ektron supports the next-generation needs of e-businesses by pro-

viding dynamic Web infrastructure solution tools designed for use by
nontechnical staff. Ektron's flagship offering, eContentManager, gives
staff members across an organization the hands-on ability to make real-
time additions and updates to Web content without requiring knowl-
edge of a programming language -- while still allowing for centralized
administrative control and security. With competitive advantages such as
ease-of-integration and drag & drop everything, Ektron is looking to pro-
vide these empowering products to customers, resellers and integrators.

5 Northern Blvd., Suite 6, Amherst, NH 03031
www.ektron.com • 603-594-0249

Eprise Corporation
At Eprise Corporation, we’re dedicated to providing software, pro-

fessional services and partnerships that make it easy to leverage the
Web for more profitable and effective business operations. Our flag-
ship product, Eprise Participant Server, incorporates leading technolo-
gy to transform the dated, one-size-fits-all Web site into a strategic
business asset that delivers timely and targeted communications. Sim-
ply put, Eprise and Eprise Participant Server empower business profes-
sionals to create, update, and target Web-based communications,
regardless of their technical knowledge or skill. Contact us today to
find out more about our products.

1671 Worcester Road, Framingham, MA 01701
www.eprise.com • 508-661-5200

FigLeaf Software
Fig Leaf Software specializes in developing turnkey web database

applications and dynamic, data-driven websites. Our goal is to develop
web-based client-server applications with functionality and interface
design that are nearly indistinguishable from desktop software devel-
oped using traditional tools such as Visual Basic, Visual FoxPro, Delphi,
or C. Above all, we want to bring maximum value to our clients at the
minimum cost. The key to fulfilling this is ensuring our staff members
are experts in their particular field. Our clients expect excellence, and
we demand it of ourselves.
1400 16th St. NW, Suite 220, Washington, DC 20036
www.figleaf.com • 877.344.5323

Inteliant
Inteliant Corporation, a leading ColdFusion consulting firm, has an

outstanding reputation for providing highly skilled developers for Inter-
net, Intranet, Extranet, Software Development, or any ColdFusion appli-
cation. Our national practice has emerged to meet the evolving needs
of our clients by providing resources onsite or developing remotely.
Our company provides the most cost effective service in the industry
and we strive to add value to your projects by minimizing expenses
whenever possible. Inteliant…"Delivering Intelligent Solutions

1150 Hancock Street, Suite 4, Quincy, MA 02169
www.inteliant.com • 800-815-5541

Interland
Interland, Inc., ranked the No. 1 Web Hosting Provider for small- to

medium-sized businesses by Windows NT Magazine, Network Comput-
ing and PC Magazine, is a global leader in Web hosting solutions rang-
ing from a basic Web site to a sophisticated e-commerce storefront.

Interland proudly features 24-hour, 7-day toll-free technical support
and an advanced Administration Page. By deploying the best products,
services, and support in the industry, Interland can build a Web pres-
ence that works for you. Speed. Reliability. Support. - Guaranteed.
101 Marietta Street, Second Floor, Atlanta, GA 30303
www.interland.com • 800-214-1460

Intermedia, Inc.
Our advanced virtual hosting packages (powered by Microsoft Win-

dows NT and Internet Information Server 4.0) offer an environment
supporting everything today’s advanced Web developer or sophisticat-
ed client could ask for. Complete ODBC support is available on plans B
and C. We support Microsoft Index Server on all hosting plans.

953 Industrial Avenue, Suite 121, Palo Alto, CA 94303
www.intermedia.net • 650 424-9935

Macromedia
New Macromedia UltraDev lets you create database-driven Web

applications faster than ever before. It also allows you to create ASP,
JavaServer Pages, and CFML applications in a single design environ-
ment. So whether you love morking directly with source code, or pre-
fer to work visually, cut the time it takes to create employee directo-
ries, product catalogs, database search pages and more.
600 Townsend Street, San Francisco, CA 94103
www.macromedia.com • 415 252-2000

SaiSoft
As a recognized Allaire, Microsoft and IBM Solutions Provider,

SaiSoft's Strategic focus is to become the most definitive Internet
Architect, by building long lasting e-business development partner-
ships. With development operations in India & the UK, SaiSoft also
undertakes off-shore consultancy projects where a 'four-step imple-
mentation' model is adopted to meet client needs satisfactorily.

446 East Street, Plainville, CT 06062
www.saisoftonline.com • 860-793-6681

Sitehosting.NET
Successful electronic commerce starts at SiteHosting.net; a division

of Dynatek Infoworld, Inc., which provides total Web development ser-
vices. We offer personal and efficient customer service with reliability
at value prices. All our plans include access to SSL (Secure Socket
Layer). We support ColdFusion, Active Server Pages, Real Audio/Video,
Netshow Server, and more. Our hosting price starts at $14.95/month.

13200 Crossroads Parkway North, Suite 360,
City of Industry, CA 91746
www.sitehosting.net • 877 684-6784

Virtualscape
Why host with Virtualscape? Nobody else on the Internet under-

stands what it takes to host ColdFusion like we do. Virtualscape is the
leader in advanced Web site hosting. From Fortune 500 extranets to e-
commerce sites and more, developers recognize our speed, stability,
reliability and technical support.

215 Park Avenue South, Suite 1905, New York, NY 10003
www.virtualscape.com • 212 460-8406

To place an ad in the

ColdFusion Marketplace
contact Robyn Forma at 201 802-3022

www.ColdFusionJournal.comCFDJ JUNE6262 www.ColdFusionJournal.comCFDJ AUGUST62

◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗ ◗

Optimized E-Business
Solutions from Allaire, Intel
(Newton, MA) – Allaire is work-
ing closely with Intel Corpora-
tion to optimize Allaire ColdFu-
sion for Intel Pentium III Xeon
processors. The joint effort will
deliver a new generation of
large-volume, transaction-
intensive Web applications.
www.allaire.com

ONCR Releases V4.0 of
CFX_ONCR_CYBERCASH
(Metuchen, NJ) – Online Cre-
ations Inc. (ONCR), a leading
developer of Internet software
and services for companies
building their busi-
nesses on the Web,
has released CFX_
ONCR_CyberCash
4.0, its custom tag for ColdFu-
sion e-commerce applications.

The tag allows companies
doing business on the Web to
charge sales to a customer’s
credit card.
www.cfxoncrcybercash.com

Ektron Launches
eWebEditPro 1.8
(Amherst, NH) – Ektron, Inc.,
has released the latest version
of its Web content creation,
editing and publishing tool.
eWebEditPro version 1.8 fea-
tures new Netscape compli-
ance, international language
support, an
intuitive
installation
wizard and InterWoven Team-
Site and IBM WebSphere sam-
ple code. Ektron also provides
sample code for Allaire’s Cold-
Fusion and Spectra, JSP, PHP,
Microsoft Active Server Pages
and Vignette StoryServer.
www.ektron.com

Mercury Interactive
Introduces Astra 4.0
(Sunnyvale, CA) – Mercury
Interactive Corp.’s Astra Load-
Test 4.0 and Astra QuickTest
4.0 Web testing tools are now
available. The new features
available in Astra 4.0 address

the expanding requirements
for Web site testing while
maintaining the product’s ease
of use. In addition, Mercury
Interactive has introduced a
Web-based training program
for Astra LoadTest 4.0

designed to introduce and
educate Web developers and
QA teams on how to conduct
successful load tests. The first
Web-based training session is
available for free. www.mer-
curyinteractive.com

(Montvale, NJ) – SYS-CON
Media announced its newest
publication, Wireless Journal
(www.Wireless -Journal.com).
WJ’s premier issue is scheduled
for newsstands worldwide in
September.

Crammed with product
reviews, industry commentary
and lively columns about
unwired Life Beyond the PC,
WJournal will be a mobile
must-have. It will set the tech-
nology agenda, worldwide, for
developers seeking to join or
keep up with the fastest-grow-
ing area of software and hard-
ware development since the
arrival of the microprocessor.

SYS-CON Media, recently
named the fastest-growing
privately held publishing com-

pany in America by Inc. 500, is
the world’s leading publisher
exclusively serving Internet
technology markets. Publica-
tions currently are ColdFusion
Developer’s Journal
(www.coldfusionjournal.com),
Java Developer’s Journal
(www.javadevelopersjournal.
com), Java Buyer’s Guide
(www.javabuyersguide.com),
XML-Journal (www.xml-jour-
nal.com), XML Buyer’s Guide
(www.xmlbuyersguide.com),
JBuilder Developer’s Journal
(www.jbuilderjournal.com),
PowerBuilder Developer’s
Journal (www.powerbuilder-
journal.com) and Tango
Developer’s Journal www.tan-
gojournal.com).

SYS-CON Media to Publish Wireless Journal

saisoft
www.saisoftonline.com

Look What’s Coming!Look What’s Coming!
Attention Advertisers:
Don’t Miss your chance to advertise in the
Allaire Developer Conference

Special Issue!Call Robyn Forma

201-802-3022
or email robyn@sys-con.com

www.ColdFusionJournal.com 63AUGUST CFDJ

catouzer

www.ColdFusionJournal.comCFDJ AUGUST64

intermedia
www.intermedia.net

